• Title/Summary/Keyword: Biological Motion

Search Result 275, Processing Time 0.026 seconds

Analysis of Elementary School Students' Psychological Science Domains by Classifying Science Vocabularies. (과학 용어 분류를 통한 초등학생들의 심리적 과학 영역 분석)

  • Lee, Sung-Ho;Lim, Cheong-Hwan;Jeong, Jin-Woo
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.1
    • /
    • pp.30-37
    • /
    • 2001
  • The importance of integrated approach have increased gradually in science education. But most of researches on integrated science have been based on the structure of science and epistemology. The investigations of students' psychological science domains are needed for effectiveness of integrated science in science curriculum and classrooms. In this study, for exploration of elementary school students' psychological science domains and their properties, students(N=96) were asked to classify scientific words presented on textbooks in several categories. Many psychological science domains were revealed. Among them, the domains that were over 20% are 'Electricity', 'The human body', 'The earth', 'Energy', 'Plant', 'Animal', 'Environment', 'Living things', 'Weather', 'Flower'. According to the results from analysis on the words that students presented in each domains, the participants hold strongly the relationships caused by everyday experiences. For example, 'light' and 'heat' showed high frequency in 'Electricity' domain and 'The human body' domain included 'force' and 'motion' in high frequency. The most inclusive domain was 'The earth'. Not only the words on earth science but also biological and chemical words were classified in this domain. So The integration that centered with 'The earth' domain looks correspond to the elementary school students' psychological aspect.

  • PDF

Biomechanical Analysis of a Combined Interspinous Spacer with a Posterior Lumbar Fusion with Pedicle Screws (척추경나사못을 이용한 유합술과 동반 시술된 극돌기간 삽입기구의 생체역학적 연구)

  • Kim, Y.H.;Park, E.Y.;Lee, S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.276-282
    • /
    • 2015
  • Recently, during the multi-level fusion with pedicle screws, interspinous spacer are sometimes substituted for the most superior level of the fusion in an attempt to reduce the number of fusion level and likelihood of degeneration process at the adjacent level. In this study, a finite element (FE) study was performed to assess biomechanical efficacies of the interspinous spacer combined with posterior lumbar fusion with a previously-validated 3-dimensional FE model of the intact lumbar spine (L1-S1). The post-operative models were made by modifying the intact model to simulate the implantation of interspinous spacer and pedicle screws at the L3-4 and L4-5. Four different configurations of the post-op model were considered: (1) a normal spinal model; (2) Type 1, one-level fusion using posterior pedicle screws at the L4-5; (3) Type 2, two-level (L3-5) fusion; (4) Type 3, Type 1 plus Coflex$^{TM}$ at the L3-4. hybrid protocol (intact: 10 Nm) with a compressive follower load of 400N were used to flex, extend, axially rotate and laterally bend the FE model. As compared to the intact model, Type 2 showed the greatest increase in Range of motion (ROM) at the adjacent level (L2-3), followed Type 3, and Type 1 depending on the loading type. At L3-4, ROM of Type 2 was reduced by 34~56% regardless of loading mode, as compared to decrease of 55% in Type 3 only in extension. In case of normal bone strength model (Type 3_Normal), PVMS at the process and the pedicle remained less than 20% of their yield strengths regardless of loading, except in extension (about 35%). However, for the osteoporotic model (Type 3_Osteoporotic), it reached up to 56% in extension indicating increased susceptibility to fracture. This study suggested that substitution of the superior level fusion with the interspinous spacer in multi-level fusion may be able to offer similar biomechanical outcome and stability while reducing likelihood of adjacent level degeneration.

Double Threshold Method for EMG-based Human-Computer Interface (근전도 기반 휴먼-컴퓨터 인터페이스를 위한 이중 문턱치 기법)

  • Lee Myungjoon;Moon Inhyuk;Mun Museong
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.471-478
    • /
    • 2004
  • Electromyogram (EMC) signal generated by voluntary contraction of muscles is often used in a rehabilitation devices such as an upper limb prosthesis because of its distinct output characteristics compared to other bio-signals. This paper proposes an EMG-based human-computer interface (HCI) for the control of the above-elbow prosthesis or the wheelchair. To control such rehabilitation devices, user generates four commands by combining voluntary contraction of two different muscles such as levator scapulae muscles and flexor-extensor carpi ulnaris muscles. The muscle contraction is detected by comparing the mean absolute value of the EMG signal with a preset threshold value. However. since the time difference in muscle firing can occur when the patient tries simultaneous co-contraction of two muscles, it is difficult to determine whether the patient's intention is co-contraction. Hence, the use of the comparison method using a single threshold value is not feasible for recognizing such co-contraction motion. Here, we propose a novel method using double threshold values composed of a primary threshold and an auxiliary threshold. Using the double threshold method, the co-contraction state is easily detected, and diverse interface commands can be used for the EMG-based HCI. The experimental results with real-time EMG processing showed that the double threshold method is feasible for the EMG-based HCI to control the myoelectric prosthetic hand and the powered wheelchair.

Evaluation of Electrohydraulic Left Ventricular Assist Device through Animal Experiment (동물실험을 통한 전기유압식 좌심실 보조장치의 성능 평가)

  • Choi, J.S.;Chung, C.I.;Choi, W.W.;Park, S.K.;Jo, Y.H.;Om, K.S.;Lee, J.J.;Won, Y.S.;Kim, H.C.;Kim, W.G.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.84-87
    • /
    • 1996
  • We have been developed electrohydraulic left ventricular assist device and done various in vivo evaluation on the device. Through the in vivo experiment conducted from Jan. 23, 1996 to Feb. 8, we could have experience of long-term evaluation fur the first time. The sheep used in this experiment had survived for 16 days. We used new actuator with reduced size and linear motion guide replacing oil box and ball bearings. Also, we used improved blood chamber with reduced size, reduced weight facilitating fixing the chamber to animal's body, and polymer sac having improved folding pattern. Against suction problem, we used absolute pressure limiter only. Motor current for driving this new actuator was not much higher than older one. Effective stroke volume was about 48 cc. Thrombosis was found around top area and peripheral boundary of the sac and valves. There was no sign of damage from suction problem in the atrium observed at autopsy. Main cause of death was presumed to be progressive formation of thrombosis in the cannulae. In this paper, the results of this experiment are documented.

  • PDF

The Verification of Photoplethysmography Using Green Light that Influenced by Ambient Light (녹색광을 이용한 반사형 광용적맥파측정기의 주변광 간섭시 신호측정)

  • Chang, K.Y.;Ko, H.C.;Lee, J.J.;Yoon, Young Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.125-131
    • /
    • 2014
  • The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.

A Biomechanical Modeling of Human Pharyngeal Muscular Dysfunction by Using FEM(Finite Element Method) (유한요소법을 이용한 인두의 기능이상에 대한 생체역학적 모델)

  • Kim Sung Jae;Bae Ha Suk;Choi Byeong Cheol;Kim Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.515-522
    • /
    • 2003
  • Pharynx is a system transporting foods by peristaltic motion(contraction and expansion movement! into the esophagus and functioning as airway passages. In this study, structural changes of pharyngeal dysfunction are analyzed by biomechanical model using CT and FEM(finite clement method). Loading condition was assumed that equal pressure was loaded sequentially to inside of pharyngeal tissue. In order to analyze the pharyngeal muscular dysfunction by biomechanical model. the pharyngeal dysfunctions was classified into 3 cases. Taking into account the clinical complication by neuromuscular symptoms such as pharyngeal dysfunction after stroke. we assumed that a change of material property is caused by muscular tissue stiffness. A deformation of cross sectional area of the pharynx is analyzed increasing the stiffness $25\%,\;50\%,\;75\%$ in each case on the basis of stress-strain relationship. Based on three-dimensional reconstruction of pharyngeal structure using limited factor - techniques and the optimization procedure by means of inverse dynamic approach. the biomechanical model of the human pharynx is implemented. The results may be used as clinical index illustrating the degree of pharyngeal muscular dysfunction. This study may be used as useful diagnostic model in discovering early deglutitory impediment caused by physiological or pathological pharyngeal dysfunction.

Characteristics of Ocean Scanning Multi-spectral Imager(OSMI) (Ocean Scanning Multi-spectral Imager (OSMI) 특성)

  • Young Min Cho;Sang-Soon Yong;Sun Hee Woo;Sang-Gyu Lee;Kyoung-Hwan Oh;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.223-231
    • /
    • 1998
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a whisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of less than 1 km over the entire field-of-view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-orbit image data storage. The instrument also performs sun calibration and dark calibration for on-orbit instalment calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400 nm to 900 nm using a Charge Coupled Device (CCD) Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands after launch. The instrument performances are fully measured for 8 basic spectral bands centered at 412, 443, 490, 510, 555, 670, 765 and 865 nm during ground characterization of instalment. In addition to the ground calibration, the on-orbit calibration will also be used for the on-orbit band selection. The on-orbit band selection capability can provide great flexibility in ocean color monitoring.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Gait Analysis of a Pediatric-Patient with Femoral Nerve Injury : A Case Study (대퇴신경 손상 환아의 보행분석 : 사례연구)

  • Hwang, S.H.;Park, S.W.;Son, J.S.;Park, J.M.;Kwon, S.J.;Choi, I.S.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.165-176
    • /
    • 2011
  • The femoral nerve innervates the quadriceps muscles and its dermatome supplies anteromedial thigh and medial foot. Paralysis of the quadriceps muscles due to the injury of the femoral nerve results in disability of the knee joint extension and loss of sensory of the thigh. A child could walk independently even though he had injured his femoral nerve severely due to the penetrating wound in the medial thigh. We measured and analyzed his gait performance in order to find the mechanisms that enabled him to walk independently. The child was eleven-year-old boy and he could not extend his knee voluntarily at all during a month after the injury. His gait analysis was performed five times (GA1~GA5) for sixteen months. His temporal-spatial parameters were not significantly different after the GA2 or GA3 test, and significant asymmetry was not observed except the single support time in GA1 results. The Lower limb joint angles in affected side had large differences in GA1 compared with the normal normative patterns. There were little knee joint flexion and extension motion during the stance phase in GA1 The maximum ankle plantar/dorsi flexion angles and the maximum knee extension angles were different from the normal values in the sound side. Asymmetries of the joint angles were analyzed by using the peak values. Significant asymmetries were found in GA1with seven parameters (ankle: peak planter flexion angle in stance phase, range of motion; ROM, knee: peak flexion angles during both stance and swing phase, ROM, hip: peak extension angle, ROM) while only two parameters (maximum hip extension angle and ROM of hip joint) had significant differences in GA5. The mid-stance valleys were not observed in both right and left sides of vertical ground reaction force (GRF) in the GA1, GA2. The loading response peak was far larger than the terminal stance peak of vertical ground reaction curve in the affected side of the GA3, GA4, GA5. The measured joint moment curves of the GA1, GA2, GA3 had large deviations and all of kinetic results had differences with the normal patterns. EMG signals described an absence of the rectus femoris muscle activity in the GA1 and GA2 (affected side). The EMG signals were detected in the GA3 and GA4 but their patterns were not normal yet, then their normal patterns were detected in the GA5. Through these following gait analysis of a child who had selective injuries on the knee extensor muscles, we could verify the actual functions of the knee extensor muscles during gait, and we also could observe his recovery and asymmetry with quantitative data during his rehabilitation.

Quantitative Analysis of Magnetization Transfer by Phase Sensitive Method in Knee Disorder (무릎 이상에 대한 자화전이 위상감각에 의한 정량분석법)

  • Yoon, Moon-Hyun;Sung, Mi-Sook;Yin, Chang-Sik;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.98-107
    • /
    • 2006
  • Magnetization Transfer (MT) imaging generates contrast dependent on the phenomenon of magnetization exchange between free water proton and restricted proton in macromolecules. In biological materials in knee, MT or cross-relaxation is commonly modeled using two spin pools identified by their different T2 relaxation times. Two models for cross-relaxation emphasize the role of proton chemical exchange between protons of water and exchangeable protons on macromolecules, as well as through dipole-dipole interaction between the water and macromolecule protons. The most essential tool in medical image manipulation is the ability to adjust the contrast and intensity. Thus, it is desirable to adjust the contrast and intensity of an image interactively in the real time. The proton density (PD) and T2-weighted SE MR images allow the depiction of knee structures and can demonstrate defects and gross morphologic changes. The PD- and T2-weighted images also show the cartilage internal pathology due to the more intermediate signal of the knee joint in these sequences. Suppression of fat extends the dynamic range of tissue contrast, removes chemical shift artifacts, and decreases motion-related ghost artifacts. Like fat saturation, phase sensitive methods are also based on the difference in precession frequencies of water and fat. In this study, phase sensitive methods look at the phase difference that is accumulated in time as a result of Larmor frequency differences rather than using this difference directly. Although how MT work was given with clinical evidence that leads to quantitative model for MT in tissues, the mathematical formalism used to describe the MT effect applies to explaining to evaluate knee disorder, such as anterior cruciate ligament (ACL) tear and meniscal tear. Calculation of the effect of the effect of the MT saturation is given in the magnetization transfer ratio (MTR) which is a quantitative measure of the relative decrease in signal intensity due to the MT pulse.

  • PDF