• Title/Summary/Keyword: Biological Engineering

Search Result 9,444, Processing Time 0.034 seconds

Inhalation of Bacterial Cellulose Nanofibrils Triggers an Inflammatory Response and Changes Lung Tissue Morphology of Mice

  • Silva-Carvalho, Ricardo;Silva, Joao P.;Ferreirinha, Pedro;Leitao, Alexandre F.;Andrade, Fabia K.;da Costa, Rui M. Gil;Cristelo, Cecilia;Rosa, Morsyleide F.;Vilanova, Manuel;Gama, F. Miguel
    • Toxicological Research
    • /
    • v.35 no.1
    • /
    • pp.45-63
    • /
    • 2019
  • In view of the growing industrial use of Bacterial cellulose (BC), and taking into account that it might become airborne and be inhaled after industrial processing, assessing its potential pulmonary toxic effects assumes high relevance. In this work, the murine model was used to assess the effects of exposure to respirable BC nanofibrils (nBC), obtained by disintegration of BC produced by Komagataeibacter hansenii. Murine bone marrow-derived macrophages ($BMM{\Phi}$) were treated with different doses of nBC (0.02 and 0.2 mg/mL, respectively 1 and $10{\mu}g$ of fibrils) in absence or presence of 0.2% Carboxymethyl Cellulose (nBCMC). Furthermore, mice were instilled intratracheally with nBC or nBCMC at different concentrations and at different time-points and analyzed up to 6 months after treatments. Microcrystaline $Avicel-plus^{(R)}$ CM 2159, a plant-derived cellulose, was used for comparison. Markers of cellular damage (lactate dehydrogenase release and total protein) and oxidative stress (hydrogen peroxidase, reduced glutathione, lipid peroxidation and glutathione peroxidase activity) as well presence of inflammatory cells were evaluated in brochoalveolar lavage (BAL) fluids. Histological analysis of lungs, heart and liver tissues was also performed. BAL analysis showed that exposure to nBCMC or CMC did not induce major alterations in the assessed markers of cell damage, oxidative stress or inflammatory cell numbers in BAL fluid over time, even following cumulative treatments. $Avicel-plus^{(R)}$ CM 2159 significantly increased LDH release, detected 3 months after 4 weekly administrations. However, histological results revealed a chronic inflammatory response and tissue alterations, being hypertrophy of pulmonary arteries (observed 3 months after nBCMC treatment) of particular concern. These histological alterations remained after 6 months in animals treated with nBC, possibly due to foreign body reaction and the organism's inability to remove the fibers. Overall, despite being a safe and biocompatible biomaterial, BC-derived nanofibrils inhalation may lead to lung pathology and pose significant health risks.

Ultrastructure of the Cell Wall of a Null Pigmentation Mutant, npgA1, in Aspergillus nidulans

  • Chung, Yun-Shin;Kim, Jung-Mi;Han, Dong-Min;Chae, Keon-Sang;Jahng, Kwang-Yeop
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.224-231
    • /
    • 2003
  • The null pigmentation mutant (npgA1) of Aspergillus nidulans was previously characterized by its production of no pigment at any stage of its life cycle, its reduction in hyphal branching, and its delay in the asexual spore development. The chemical composition of the cell wall was also altered in npgA1 mutants that became more sensitive to Novozyme 234$\^$TM/, which is possibly due to a structural defect in the cell wall. To investigate the effects of the cell wall structure on these pleiomorphic phenomena, we examined the ultrastructure of the cell wall in the npgA1 mutant (WX17). Scanning electron micrographs (SEM) showed that after being cultured for six days, the outermost layer of the conidial wall of WX17 peeled off. Although this phenotype suggested that the cell wall structure in WX17 may be modified, examination using TEM of the fine structure of cross-sectioned hyphal wall of WX17 did not show any differences from that of FGSC4. However, staining for carbohydrates of wall layers showed that the electron-translucent layer of the cell wall was missing in WX17. In addition, the outermost layer H1 of the hyphal wall was also absent in WX17. The ultrastructural observation and cytochemical analysis of cell walls suggested that the pigmentation defect in WX17 may be attributed to the lack of a layer in the cell wall.

Catalytic Nitrate Reduction in Water over Mesoporous Silica Supported Pd-Cu Catalysts (중형 기공성 실리카 담체에 담지된 Pd-Cu 촉매를 활용한 수중 질산성 질소 저감 반응)

  • Kim, Min-Sung;Chung, Sang-Ho;Lee, Myung Suk;Lee, Dae-Won;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.65-72
    • /
    • 2013
  • In this study, we investigated the activity of Pd and Cu co-incorporated on mesoporous silica support such as MCM-41 and SBA-15 for catalytic nitrate reduction in water. In pure hydrogen flow, nitrate concentration was gradually decreased with the reaction time, but nitrogen selectivity was too low due to very high pH of reaction medium after the reaction. In order to acquire high nitrogen selectivity, we utilized carbon dioxide as a pH buffer, which resulted in higher nitrogen selectivity (about 40%). For the above reaction conditions, Pd-Cu/MCM-41 showed better performance than Pd-Cu/SBA-15. The physicochemical properties of both catalysts were investigated to figure out the relationship between the characteristics of the catalysts and the catalytic activity on the catalytic nitrate reduction by $N_2$ adsoprtion-desorption, X-ray diffraction (XRD), $H_2$-temperature programmed reduction, X-ray photoelectron spectroscopy (XPS) techniques.

Three-dimensional porous graphene materials for environmental applications

  • Rethinasabapathy, Muruganantham;Kang, Sung-Min;Jang, Sung-Chan;Huh, Yun Suk
    • Carbon letters
    • /
    • v.22
    • /
    • pp.1-13
    • /
    • 2017
  • Porous materials play a vital role in science and technology. The ability to control their pore structures at the atomic, molecular, and nanometer scales enable interactions with atoms, ions and molecules to occur throughout the bulk of the material, for practical applications. Three-dimensional (3D) porous carbon-based materials (e.g., graphene aerogels/hydrogels, sponges and foams) made of graphene or graphene oxide-based networks have attracted considerable attention because they offer low density, high porosity, large surface area, excellent electrical conductivity and stable mechanical properties. Water pollution and associated environmental issues have become a hot topic in recent years. Rapid industrialization has led to a massive increase in the amount of wastewater that industries discharge into the environment. Water pollution is caused by oil spills, heavy metals, dyes, and organic compounds released by industry, as well as via unpredictable accidents. In addition, water pollution is also caused by radionuclides released by nuclear disasters or leakage. This review presents an overview of the state-of-the-art synthesis methodologies of 3D porous graphene materials and highlights their synthesis for environmental applications. The various synthetic methods used to prepare these 3D materials are discussed, particularly template-free self-assembly methods, and template-directed methods. Some key results are summarized, where 3D graphene materials have been used for the adsorption of dyes, heavy metals, and radioactive materials from polluted environments.

Rheological properties and crystallization kinetics of polypropylene block copolymer with repeated extrusion

  • Sung Yu-taek;Seo Won Jin;Kim Jong Sung;Kim Woo Nyon;Kwak Dong-Hwan;Hwang Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.21-25
    • /
    • 2005
  • Rheological properties and crystallization kinetics of the polypropylene (PP) block copolymer and recycled PP block copolymer were studied by advanced rheometric expansion system (ARES), differential scanning calorimetry (DSC), and optical microscopy. In the study of the dynamic rheology, it is observed that the storage modulus and loss modulus for the PP block copolymer and recycled PP block copolymer did not change with frequency. In the study of the effect of the repeated extrusion on the crystallization rate, half crystallization time of the PP samples was increased with the number of repeated extrusion in isothermal crystallization temperature ($T_c$). From the isothermal crystallization kinetics study, the crystallization rate was decreased with the increase of the number of repeated extrusion. Also, from the result of Avrami plot, the overall crystallization rate constant (K) was decreased with the increase of the number of the repeated extrusion. From the study of the optical microscopy, the size of the spherulite of the PP samples did not change significantly with the number of repeated extrusion. However, it was clearly observed that the number of the spherulite growth sites was decreased with the number of repeated extrusion. From the results of the crystallization rate, isothermal crystallization kinetics, Avrami plots, and optical microscopy, it is suggested that the crystallization rate of the PP block copolymer is decreased with the increase of the number of repeated extrusion.

Effect of pH on the binding of hGM-CSF to ion exchange resin

  • Myoung, Hyun-Jong;Lee, Sang-Yoon;Lee, Kyoung-Hoon;Han, Kyu-Boem;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.320-323
    • /
    • 2003
  • The effects of pH on the binding of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) expressed from transgenic plant cell suspensions to cationic and anionic exchange resins were investigated. In terms of stability, the optimum pH was found to be 5-7. In the case of using buffer exchange, when CM-sepharose was used as a cationic exchange resin, the best binding pH was 4.8 (77%) and when DEAE-sepharose was used as an anionic exchange resin, the best binding pH was 5.5 (74%). Without using buffer exchange, the optimum pH was 4.6 and the adsorption yield was 84%. From these results, a possibility of overcoming the degradation and instability of secreted protein product by in firm adsorption was found.

  • PDF

Comparison of on rat intestinal ${\alpha}-glucosidase$ activity and the chemical compositions of Korean and Chinese Schizandra chinensis

  • Chae, Hee-Jun;Lee, Min-Hu;Kim, Sun-Hyo;Moon, Hae-Yeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.546-552
    • /
    • 2005
  • The purpose of this study was to determine the effect of rat intestinal ${\alpha}-glucosidase$ inhibitor ; methanol(80%), ethanol(80%) and $dH_2O$ extract of Schizandra chinensis in Korea(KS : Schizandra chinensis in Korea) and China(CS : Schizandra chinensis in China). When the final concentration was 1 $mg/m{\ell}$ for each sample(KS and CS), MeOH extract of KS($IC_{50}$ 1.62 mg/ml) showed 46.8%, EtOH extract of KS($IC_{50}$ 1.48 mg/ml) showed 47.4%, $dH_2O$ extract of KS($IC_{50}$ 1.72 mg/ml) showed 46.3% and MeOH extract of CS($IC_{50}$ 8.35 mg/ml) showed 13.3%, EtOH extract of CS($IC_{50}$ 8.05 mg/ml) showed 16%, $dH_2O$ extract of CS($IC_{50}$ 8.37 mg/ml) showed 11.54% of inhibiter for p-nitrophenyl ${\alpha}$, D-glucopyranoside ${\alpha}-glcosidase$ activity, respectively, And the contents of total phenol, flavonoid of Schizandra chinensis were measured. When the final concentration was 1 $mg/m{\ell}$ for each sample(KS and CS), total phenol and flavonoid in KS were higher than CS, respectively.

  • PDF

Influence of Surfactant on the Hydrolysis of Used Newspaper (폐 신문지의 가수분해에 미치는 계면활성제의 영향)

  • Kim, Sung-Bae;Shin, Hae-Joong;Kim, Chang-Joon;Bak, Young-Cheol
    • KSBB Journal
    • /
    • v.22 no.1
    • /
    • pp.43-47
    • /
    • 2007
  • The effect of surfactant on the hydrolysis of used newspaper was investigated. The most suitable surfactant for the pretreatment stage was found to be NP-series surfactants among 9 kinds of non ionic surfactants. Process parameters such as surfactant concentration, mixing speed, pretreatment temperature and time were tested to optimize for maximum digestibility and 0.5%, 100rpm, 30$^{\circ}C$, and 1 h were found to be optimum, respectively. In order to maximize digestibility, substrate was pretreated with NP-20 and then the pretreated substrate was hydrolyzed by adding TW-80. The effect of surfactant on the hydrolysis of previously surfactant-pretreated newspaper was marginal. Therefore, the digestibility with the addition order of enzyme and surfactant was investigated by using surfactant only in hydrolysis stage. The results show that digestibility was more lowered as the surfactant addition after adding enzyme to substrate was more delayed.

Decomposition of Ethylene using a Hybrid Catalyst-packed Bed Plasma Reactor System (플라즈마 충진 촉매 시스템을 이용한 에틸렌 저감 연구)

  • Lee, Sang Baek;Jo, Jin-Oh;Jang, Dong Lyong;Mok, Young Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.577-585
    • /
    • 2014
  • A series of experiments using atmospheric-pressure non-thermal plasma coupled with transition metal catalysts were performed to remove ethylene from agricultural storage facilities. The non-thermal plasma was created by dielectric barrier discharge, which was in direct contact with the catalyst pellets. The transition metals such as Ag and $V_2O_5$ were supported on ${\gamma}-Al_2O_3$. The effect of catalyst type, specific input energy (SIE) and oxygen content on the removal of ethylene was examined to understand the behavior of the hybrid plasma-catalytic reactor system. With the other parameters kept constant, the plasma-catalytic activity for the removal of ethylene was in order of $V_2O_5/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ from high to low. Interestingly, the rate of plasma-catalytic ozone generation was in order of $V_2O_5/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$, implying that the catalyst activation mechanisms by plasma are different for different catalysts. The results obtained by varying the oxygen content indicated that nitrogen-derived reactive species dominated the removal of ethylene under oxygen-lean condition, while ozone and oxygen atoms were mainly involved in the removal under oxygen-rich condition. When the plasma was coupled with $V_2O_5/{\gamma}-Al_2O_3$, nearly complete removal of ethylene was achieved at oxygen contents higher than 5% by volume (inlet ethylene: 250 ppm; gas flow rate: $1.0Lmin^{-1}$; SIE: ${\sim}355JL^{-1}$).