• 제목/요약/키워드: Biological Engineering

검색결과 9,444건 처리시간 0.043초

제1회 극동 의공학회 참관기

  • 박광석
    • Journal of Biomedical Engineering Research
    • /
    • 제11권2호
    • /
    • pp.315-318
    • /
    • 1990
  • 필자는 1990년 10월 11일부터 13일까지 일본 동경대학에서 개최된 제1회 극동 의공학회(Far Eastern Conference on Medical Engineering & Biological Engineering : FECMBE 1990)에 참석하였다. 여기에서 학술대회의 내용과 극동지역에서의 의공학의 동향에 관하여 기술하고자 한다.

  • PDF

Photo or Solar Ferrioxalate Disinfection Technology without External Hydrogen Peroxide Supply

  • Cho, Min;Jeong, Joon-Seon;Kim, Jae-Eun;Yoon, Je-Yong
    • Environmental Engineering Research
    • /
    • 제12권5호
    • /
    • pp.238-243
    • /
    • 2007
  • The Fenton reaction, which refers to the reaction between ferrous ions and hydrogen peroxide to produce the OH radical, has not been widely applied to the disinfection of microorganisms despite being economic and environmentally friendly. Cho et al. have previously proposed the neutral photo ferrioxalate system as a solution to the problems posed by the Fenton reaction in acidic conditions, but this system still requires an external hydrogen peroxide supply. In the present study, we developed a simple disinfection technology using the photo or solar ferrioxalate reaction without the need for an external hydrogen peroxide supply. E. coli was employed as the indicating microorganism. The study results demonstrated the effectiveness of the photo ferrioxalate system in inactivating E. coli without any external hydrogen peroxide supply, as long as dissolved oxygen is supplied. Furthermore, the solar ferrioxalate system achieved faster inactivation of E. coli than an artificial light source at similar irradiance.

Dynamic Modeling and Design of Finger Exoskeleton Using Polymer Actuator (고분자 구동체를 이용한 손가락 외골격기구의 설계 및 동력학적 모델 개발)

  • Jeong, Gwang-Hun;Kim, Yoon-Jeong;Yoon, Bye-Ri;Wang, Hyuck-Sik;Song, Dae-Seok;Kim, Sul-Ki;Rhee, Kye-Han;Jho, Jae-Young;Kim, Dong-Min;Lee, Soo-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제29권7호
    • /
    • pp.717-722
    • /
    • 2012
  • This paper presents the design and dynamic model of the finger exoskeleton actuated by Ionic Polymer Metal Composites (IPMC) to assist a tip pinch task. Although this exoskeleton will be developed to assist 3 degree-of-freedom motion of each finger, it has been currently made to perform the tip pinch task using 1 degree-of-freedom mechanism as the first step. The six layers of IPMC were stacked in parallel to increase the low actuation force of IPMC. In addition, the finger dummy was manufactured to evaluate the performance of the finger exoskeleton. The pinch task experiments, which were performed on the finger dummy with the developed exoskeleton, showed that the pinch force close to the desired level was obtained. Moreover, the dynamic model of the exoskeleton and finger dummy was developed in order to perform the various analyses for the improvement of the exoskeleton.