T-P44 ## Electrical and structural investigation of Nd-doped TiO₂ thin films grown on RuO₂ substrate by Atomic Layer Deposition H. Kwon¹, W. T. Park², B. H. Kim^{2*} and J. S. Ha^{1*} ¹Department of Chemical and Biological Engineering, Korea University ²Department of Materials Science and Engineering, Korea University Nd-doped TiO₂ thin films were grown on the RuO₂ substrate at 225 °C by atomic layer deposition (ALD) technique using titanium(IV) isopropoxide [Ti(OCH(CH₃)₂)₄], Tris(2,2,6,6-tetra-methyl-heptanedionato) Neodymium(III) [Nd(TMHD)₃] and H₂O as precursors. The structural and electrical properties of Nd-doped TiO₂ thin films were investigated by TEM, AES, XRD, I-V and C-V measurements. The dielectric constant and the leakage current density of the as-grown 20 nm thick TiO₂ film were estimated to be ~30 and 10⁻³~10⁻⁴ A/cm², respectively. After post-annealing at temperatures higher than 400 °C, higher dielectric constant of 60-80 was obtained while the leakage current value remained the same. For the reduction of the leakage current density, a small amount of Nd was doped into TiO₂ film. The chemical composition of the Nd-doped TiO₂ thin films was confirmed to be Nd_{0.5}Ti_{4.5}O₁₀ by taking depth profiles of AES peaks. After post-annealing of the Nd-doped TiO₂ thin films, both the dielectric constant and the leakage current density decreased from those of TiO₂ films. We will discuss the effect of Nd-doping on the electrical properties of the high-k TiO₂ films.