• Title/Summary/Keyword: Biological Engineering

Search Result 9,444, Processing Time 0.033 seconds

Effects of media weight and pre-ozonation on the biodegradability enhancement in biological fluidized bed (생물활성탄 유동상법에서 충전량과 전오존처리가 생물처리효율에 미치는 영향)

  • 우달식;곽필재;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.1
    • /
    • pp.69-75
    • /
    • 1997
  • Biological drinking water treatment is widely used in Europe for the removal of ammonia nitrogen and organics. During the last 16 years, the deterioration of the quality of surface waters used to produce drinking water has resulted in the widespread use of ozone-biological treatment in Korea. This study were conducted to determine the effect of media weight and preozonation on the biodegradability enhancement in biological fluidized bed(BFB) using Han river water. When the carbon weight was increased, $NH_{3}-N$ and DOC removal increased, but turbidity and SS removal decreased. To remove turbidity and SS, the bed depth in 40% expansion rate/total bed depth was very important. Preozonation of raw water was not effective in $NH_{3}-N$, but increased in biodegradable organic fraction about 10-30% with 0.425-0.85 mg $O_{3}/mg$ DOC.

  • PDF

Verification of biological nitrogen removal program in sewage or wastewater treatment plants (${\cdot}$ 폐수처리장에서의 생물학적 질소제거 프로그램 검증)

  • Kim, Hee-Sun;Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2007
  • Based on the experiment results of laboratory scale modified anoxic-oxic process for leachate treatment, biological nitrogen removal program was verified in terms of SS, COD, and TN concentration. These measured water qualities concentration could be predicted by biological nitrogen removal program with $R^2$ of 0.994, 0.987, 0.990, respectively. No error was occurred between water qualities concentration and quite wide range of water qualities concentration (i.e., 50-4200 mg/L) during the modelling. Each unit and final effluent of simulated concentration was kept good relationship with that of measured concentration therefore this biological nitrogen removal program for sewage or wastewater treatment plants has good reliance.

Field Test for a Biological Nitrogen Treatment System with Low Temperature Solar Thermal Energy (저온 태양열을 이용한 생물학적 오수 처리 장치 실증 실험)

  • Chung, Mo;Lee, Dong-Won
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.34-41
    • /
    • 2008
  • A low-temperature solar thermal system assisting a biological nitrogen treatment reservoir was designed and field-tested. A large tank whose temperature was maintained at about $25-30^{\circ}C$ to enhance the performance of a biological nitrogen treatment process was heated by an array of flat plate solar collectors. Test results revealed that the overall collector efficiency was above 50% for the most cases tested. This high efficiency was possible owing to the relatively low collector temperature that can be traced back to the reservoir temperature. A substantial enhancement in nitrogen treatment was observed as a result of maintaining the reservoir temperature higher.

Study of Factors Influenced on denitrification in wastewater treatment (폐수처리 탈질 공정에 미치는 인자 연구)

  • Jeong, Gwi-Taek;Park, Seok-Hwan;Park, Jae-Hee;Bhang, Sung-Hun;Lim, Eun-Tae;Park, Don-Hee
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.535-540
    • /
    • 2008
  • In this study, the effects of several factors such as initial nitrate concentration, C/N ratio, biomass amount and external carbon source on denitrification process were investigated using synthetic wastewater and sludge obtained from wastewater treatment facility. As a result, the condition of lower initial nitrate concentration was increased to the removal rate of nitrate than that of high concentration. The increases of C/N ratio and initial biomass amount were linearly enhanced the removal rate. The use of ethanol as external carbon source was shown the highest removal yield than that of others.

Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture

  • Hyunsoo Jang;Seo Hyun Kim;Youmin Koh;Ki-Jun Yoon
    • International Journal of Stem Cells
    • /
    • v.15 no.1
    • /
    • pp.41-59
    • /
    • 2022
  • The emergence of brain organoids as a model system has been a tremendously exciting development in the field of neuroscience. Brain organoids are a gateway to exploring the intricacies of human-specific neurogenesis that have so far eluded the neuroscience community. Regardless, current culture methods have a long way to go in terms of accuracy and reproducibility. To perfectly mimic the human brain, we need to recapitulate the complex in vivo context of the human fetal brain and achieve mature neural circuitry with an intact cytoarchitecture. In this review, we explore the major challenges facing the current brain organoid systems, potential technical breakthroughs to advance brain organoid techniques up to levels similar to an in vivo human developing brain, and the future prospects of this technology.

Synthesis of Uniform Silica Nanoparticles using Tap, Industrial, and Stream water and Their Application to Electro-responsive Smart Fluid System (상수, 공업용수, 및 하천수를 활용한 균일한 실리카 나노입자 합성 및 전기감응형 스마트유체로의 응용)

  • Ha-Yeong Kim;Suk Jekal;Neunghi Lee;Minki Sa;Dong Hyun Kim;Min Sang Kim;Jiwon Kim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • This study describes the successful synthesize strategy for the silica nanoparticles utilizing various water sources, including tap, industrial, and stream waters without using deionized water. Also, as-synthesized silica nanoparticles are employed as dispersive materials for the electro-responsive smart fluid application. Specifically, homogeneous silica nanoparticles with sizes of 500-700nm are successfully prepared in large scale at once (ca. 12.0 g) with the described experimental method and showing similar structural and chemical characteristics with silica nanoparticles synthesized using the deionized water. The size of silica nanoparticles are varied according to the ion conductivity differences of tap, industrial, stream water, and deionized water. The size of silica nanoparticles decresed with the increased ion conductivity, indicating the ion suppression of growth of silica nanoparticles. Moreover, as-synthesized silica nanoparticles from various water sources of electro-responsive characteristic are investigated by the smart fluid application. The smart fluids containing silica nanoparticles synthesized by tap, industrial, and stream water exhibited higher shear stress compared to the deionized water, owing to the more rigid fibril-like structures formed by the smaller silica nanoparticles. Conclusively, uniform silica nanoparticles from various water sources without any purification are able to successfully prepared without usage of deionized water and resulting silica nanoparticles manifested higher electro-responsive performance.

Mitochondria Medicine and its Research Trend (미토콘드리아 의학과 연구동향)

  • Shim, E.B.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.355-361
    • /
    • 2009
  • Mitochondria play a key role in maintaining life by producing ATP and heat. Recent researches have demonstrated that degenerative diseases such as heart failure, obesity/diabetes, cardiovascular disease, and psychiatric diseases are accompanied by mitochondria dysfunction. In this sense, mitochondria medicine considers the significance of mitochondria in human pathology and tries to explain degenerative diseases as a fatal consequence of mitochondria dysfunction. Here, I introduce the fundamentals of mitochondria physiology and present examples showing the relationship between mitochondria dysfunction and chronic complex diseases. Although mitochondria medicine uses a molecular biological approach predominantly, a biomedical engineering approach might play a critical role in unveiling the complexity of mitochondria medicine and in its application to the diagnosis and treatment of chronic diseases. Thus, I also briefly review the prospects of research using biomedical engineering methods.

A study on the Developement of Biofeedback System (바이오피이드백 시스템 개발에 관한 연구)

  • Sung, H.M.;Shin, J.W.;Yoon, Y.R.;Yoon, H.R.;Kang, D.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.453-456
    • /
    • 1997
  • In this paper, we present the developement of Biofeedback system. Biofeedback is a method for learned control of physiological response of the body. It can be used to control certain biological response that cause health problems. Over the past 2 decades, biofeedback has received much attention from medicine as a cure-all for a variety of disease. It has been heralded as a technique that can provide normalization of disturbed physiology without the need for drugs or surgery and their attendant negative side effects. Biofeedback system has been implemented by using PIC microprocessor. We have displayed 5-channel value on PC and managed patient information by using Delphi.

  • PDF

Plant Terpenes and lignin as Natural Cosubstrates in Biodegradation of Polyclorinated Biphyls (PCBs) and Polucyclic Aromatic Hydrocarbons (PAHs)

  • Koh, Sung-Cheol;Park, Young-In;Koo, Yoon-Mo;So, Jae-Seong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.164-168
    • /
    • 2000
  • The obhective of this minireview is to examine how cometabolic biodegradation of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) might be af fected by plant terpenes and lignins as natural substral substrates abundant in mature. The topics covered, hence are environmental sinficance of PCBs and PAHs, nature and disribution of plant terpences and lignin, structural and metabolic similarities of the natural compounds to PCBs and PAHs, and possible roles of the natural substrates in inducing the biodegradative patathways of PCBs and PAHs

  • PDF

Development of a Portable Cardiac Event Recorder (휴대용 심전도 이벤트 기록기 개발)

  • Chun, H.G.;Kim, H.C.;Lee, C.Y.;Kim, I.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.187-188
    • /
    • 1998
  • A low cost, low power, portable cardiac event recorder as a tether-free biological signal processor was developed. Dual channel ECG signals are sampled at 128Hz in 12 bits resolution. Sampled data are continuously recorded in a circular buffer. If event button is pressed, 2 minutes data before and after the event are recorded in 512 Kbyte SRAM. Total 11 events can be recorded. Data can be transferred to PC through RS-232 protocol. It operates for two months by a half AA size 3.6V Lithium battery. The system size is $55\times55\times13[mm^3]$.

  • PDF