• Title/Summary/Keyword: Biological Decay

Search Result 101, Processing Time 0.062 seconds

An Estimation of the New Production in the Southern East Sea Using Helium Isotopes

  • Kim, Kyung-Ryul;Hahm, Do-Shik
    • Journal of the korean society of oceanography
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2001
  • The biological pump is one of the important pumping mechanisms absorbing CO$_2$ from the atmosphere into the ocean and can be quantified by estimating new production. New production in the open ocean mostly depends on the supply of nitrate from the water below the mixed layer. While nitrate is affected by many biological processes, the helium isotope ($^3$He) is inert and has very simple physical properties. Using the $^3$He flux and the relation between $^3$He and NO${_3}\;{^-}$- within the thermocline, the nitrate flux supporting new production was estimated in the southern East Sea. The average ${\delta}^3$He within the mixed layer was -14$%_o$ and -l5.4$%_o$ in the winter and autumn, respectively. Through the year excess $^3$He occurs in the mixed layer except for a slight depletion of -17$%_o$ in summer. The $^3$He flux of 13$%_o$md$^{-1}$ associated with the concentration gradient at the air-sea interface was calculated from the product of the piston velocity and the excess $^3$He. Tritium decay within the mixed layer could support only 2$%_o$md$^{-1}$ of the flux. Thus, the remaining 11$%_o$md^{-1}$ could be attributed to the flux of tritiugenic $^3$He from the water below the mixed layer. Nitrate and $^3$He were positively correlated within the thermocline layer with the slope of 0.21 ${\mu}$mol kg$^{-1}$ $%_o\;^{-1}$. The annual nitrate flux estimated from the upward flux of $^3$He and the NO$_{3}\;{^-}$-$^3$He relation was 0.8${\pm}$0.2 mol(N) m$^{-2}$yr$^{-1}$. This flux corresponds to an annual new production of 64 g(C) m$^{-2}$yr$^{-1}$, which is consistent with that in the north-west Pacific.

  • PDF

Nutrient Leaching from Leaf Litter of Emergent Macrophyte(Zizania latifolia) and the Effects of Water Temperature on the Leaching Process

  • Park, Sangkyu;Cho, Kang-Hyun
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.289-294
    • /
    • 2003
  • To quantify nutrient loading from emergent macrophytes through leaching in the littoral zones of Paldang Reservoir, we conducted incubation experiments using leaf litter of the emergent macrophyte, Zizaniz latifolia. To separate the leaching process from microbial decay, we used $HgCl_2$ to suppress microbial activity during the experiment. We measured electric conductivity, absorbance at 280nm, total nitrogen and dissolved inorganic nitrogen, total phosphorus and soluble reactive phosphorus, Na, K, Mg and Ca amounts in leaf litter and in water. In addition, we examined the effects of water temperature and ion concentrations of ambient water on the leaching process. A total of 6% of the initial ash-free dry mass of leaf litter was lost due to leaching during incubation (four days). Electric conductivity and A280 continued to increase and saturate during the incubation. To compare reaching rates of different nutrients, we fitted leaching dynamics with a hyperbolic saturation function [Y=AㆍX/(B+X)]. From these fittings, we found that ratios of leaching amounts to nutrient concentration in the litter were in the order of K > Na > Mg > P > Ca > N. Leaching from leaf litter of Z. latifolia was dependent on water temperature while it was not related with ion concentrations in the ambient water. Our results suggest that the leaching process of nutrients, especially phosphorus, from aquatic macrophytes provides considerable contribution to the eutrophication of the Paldang Reservoir ecosystem.

Application of Rechlorination for Adequate Disinfection Ability in Water Distribution System (관로 내 적정소독능 확보를 위한 재염소 기법의 적용)

  • Lee, Doo-Jin;Kim, Young-Il;Lee, Jong-Min;Jung, Nam-Jung;Kim, Yong-Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.701-707
    • /
    • 2006
  • Disinfectant residual should be maintained to achieve biological stability during distribution of treated water. The wide distribution of retention times associated with storage and transport of water in a network and the reactivity of disinfectants make it difficult to maintain adequate residuals at critical locations. Rechlorination at some intermediate locations may reduce the total disinfectant dose while keeping residuals within specified limits throughout the water distribution system. In order to select the adequate location of rechlorination for achieving to maintain of residual chlorine throughout the distribution system, EPANET was used in this study. EPANET was well predicted chlorine transport and residual loss in the distribution system. Location of rechlorination was selected to maintain 0.4mg/L of residual chlorine throughout a water distribution system by field investigation and model simulation. The quantity of chlorine may reduced 36.7% and provided smooth residual between 0.42 and 0.60mg/L, when rechlorination would be used continuously at strategic location within the distribution system.

evelopment of biological methods for improving the storage qualities of sweet persimmon harvested in Gyeongsangnam-do (생물학적 처리방법에 의한 경남산 단감의 저장성 향상을 위한 기술개발)

  • 조성환;김영록
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.4
    • /
    • pp.263-270
    • /
    • 1995
  • In order to promote the prevention of microbial and enzymatic spoilage and to retain the freshiness, sweet persimmons harvested in Gyeongsangnam-do were treated with graperfruit seed extract(GFSE)-CaCO3 mixture and stored in the proper packaging conditions. A low concentration of GFSE showed effective growth inhibition of plant pathological bacteria and fungi, Enterobacter pyrinus and Fusarium sp., which were involved in the decay of fruits and vegetables. GFSE was stable to heat treatment; its antimicrobial activity was not changed by heat treatment upto 10$0^{\circ}C$. However, when the temperature was raised to 12$0^{\circ}C$, about 90% of total activity was retained within 30 min. GFSE was also highly stable to broad pH changes; its activity was not changed in the range of pH 2.0 to pH 12.0. The physiological function of cell membrane in the spores of Bacillus cereus and the hyphae of Fusarium sp. was destroyed by treating with GFSE. It was observed that treating sweet persimmons with GFSE minxture and storing them in strech-wrapped packages could prolong the greshness of sweet persimmons and reduce quality deterioration.

  • PDF

Study of the Effect of (U0.8Pu0.2)O2 Uranium-Plutonium Mixed Fuel Fission Products on a Living Organism

  • Baimukhanova, Ayagoz;Kim, Dmitriy;Zhumagulova, Roza;Tazhigulova, Bibinur;Zharaspayeva, Gulzhanar;Azhiyeva, Galiya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.965-974
    • /
    • 2016
  • The article describes the results of experiments conducted on pigs to determine the effect of plutonium, which is the most radiotoxic and highly active element in the range of mixed fuel $(U_{0.8}Pu_{0.2})O_2$ fission products, on living organisms. The results will allow empirical prediction of the emergency plutonium radiation dose for various organs and tissues of humans in case of an accident in a reactor running on mixed fuel $(U_{0.8}Pu_{0.2})O_2$.

Dissipation Pattern of Amisulbrom in Cucumber under Greenhouse Condition for Establishing Pre-harvest Residue Limit (생산단계 잔류허용 기준 설정을 위한 시설 재배 오이 중 살균제 Amisulbrom의 잔류특성 연구)

  • Hwang, Kyu-Won;Kim, Tae Wan;Yoo, Jae-Hong;Park, Byeoung-Soo;Moon, Joon-Kwan
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.288-293
    • /
    • 2012
  • The dissipation patterns of amisulbrom in cucumber under a greenhouse condition was investigated to establish biological half-life and pre-harvest residue limit (PHRL). Amisulbrom residue in/on cucumber on the day of application under standard application condition was $0.15mg\;kg^{-1}$ and decreased to $0.06mg\;kg^{-1}$ after 5 days after treatment, so that biological half-life calculated 3.6 day, while initial concentration of amisulbrom twice application 3 days interval under standard application condition was $0.35mg\;kg^{-1}$ and decreased to $0.09mg\;kg^{-1}$ after same period and the biological half-life calculated 2.4 day. PHRL was suggested by prediction curve calculated from the decay constant of amisulbrom at standard rate. For example, $1.83mg\;kg^{-1}$ at 5 days before harvest and $1.03mg\;kg^{-1}$ at 2 days before harvest were suggested.

Developmemt of Rice Husk Pellets as Bio-filter Media of Bio Scrubber Odor Removal System (왕겨펠렛 생물담체 개발 및 이를 이용한 bio scrubber형 악취제거 시스템 성능평가)

  • Bae, Jiyeol;Han, Sangjong;Park, Ki Ho;Kim, Kwang-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.554-566
    • /
    • 2018
  • The rice husk contains nutrients which can be easily utilized by microorganisms, and also has a water retaining ability, which played a crucial part in enabling it to become a biofilter media. In this study, we evaluated the applicability of rice husk pellet bio-scrubber as a microbiological carrier. The pelletization experiment of rice husk as a biological media was performed using PVA and EVA binder. Also, the feasibility tests of rice husk as a biological media for odor removal were carried out in order to know whether rice-husk contains useful components as a media for microbiological growth or not. Lastly, a combined test for odor gas absorption and biological oxidation was conducted using a lab scale bio-filter set-up packed with rice-husk pellets as wet-scrubber. The major components of the rice husk were carbon, hydrogen, nitrogen, and oxygen, while carbon acted as the main ingredient which comprised up to 23.00%. The C : N : P ratio was calculated as 45 : 1 : 2. Oxygen uptake rate, yield and decay rate of the rice husk eluent was calculated to be $0.0049mgO_2/L/sec$, 0.24 mgSS/mgCOD and 0.004 respectively. The most stable form of rice husk pellets was produced when the weight of the rice husk, EVAc, PVAc, and distilled water was 10 : 2 : 0.2 : 10. The prepared rice husk pellets had an apparent density of 368 g/L and a porosity of 59.00% upon filling. Dry rice husks showed high adsorption capacity for ammonia gas but low adsorption capacity for hydrogen sulfide. The bio-filter odor removal column filled with rice husk pellets showed more than 99.50% removal efficiency for NH3 and H2S gas. Through the analysis of circulation water, the prime removal mechanism is assumed to be the dissolution by water, microbial nitrification, and sulfation. Finally, it was confirmed that the microorganisms could survive well on the rice husk pellets, which provided them a stable supply of nutrients for their activity in this long-term experiment. This adequate supply of nutrients from the rice husk enabled high removal efficiency by the microorganisms.

Minimization of Excess Activated Sludge in Nonwoven Fabric Filter Bioreactor (부직포 여과막 생물반응조에서의 폐활성슬러지 감량화)

  • Jung, Kyoung-Eun;Bae, Min-Su;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.88-96
    • /
    • 2006
  • Among the various methods for minimization of waste activated sludge, maintaining a low F/M ratio in the bioreactor is known to be the most effective reliable one. In this research, various experiments were performed to check the capability of the nonwoven fabric filter bioreactor, which has been proved able to maintain a low F/M ratio by maintaining a high MLSS concentration, for excess sludge minimization. The reactor was intermittently fed with a synthetic wastewater having a COD concentration of approximately 300 mg/L and no SS. Results of the experiments showed that the F/M ratio in the reactor decreased to a minimum value of 0.02 g COD/g MLSS-day as the MLSS concentration increased to a maximum value of 31,010 mg/L. However, the measured endogenous decay coefficients and oxygen uptake rates of the MLSS confirmed that the activity of the MLSS decreased as the MLSS concentration increased. Based on the increase of MLSS in the reactor and the mass balance during the whole experimental period, the average microorganism yield coefficients were computed to be low values of 0.148 and 0.139 g MLSS/g COD, respectively. These results indicate that the nonwoven fabric filter bioreactor employed in this research is effective for minimization of excess sludge production.

Photochemical/Biophysical Properties of Proteorhodopsin and Anabaena Sensory Rhodopsin in Various Physical Environments (막 단백질인 Proteorhodopsin과 Anabaena Sensory Rhodopsin의 다양한 측정 환경에 따른 광화학/생물리학적 특성)

  • Choi, Ah-Reum;Han, Song-I;Chung, Young-Ho;Jung, Kwang-Hwan
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Rhodopsin is a membrane protein with seven transmembrane region which contains a retinal as its chromophore. Although there have been recently reports on various photo-biochemical features of rhodopsins by a wide range of purifying and measurement methods, there was no actual comparison related to the difference of biochemical characteristics according to their physical environment of rhodopsins. First, proteorhodopsin (PR) was found in marine proteobacteria whose function is known for pumping proton using light energy. Second one is Anabaena sensory rhodopsin (Nostoc sp.) PCC7120 (ASR) which belongs to eubacteria acts as sensory regulator since it is co-expressed with transducer 14 kDa in an operon. In this study, we applied two types of rhodopsins (PR and ASR) to various environmental conditions such as in Escherichia coli membranes, membrane in acrylamide gel, in DDM (n-dodecyl-${\beta}$-D-maltopyranoside), OG (octyl-${\beta}$-D-glucopyranoside), and reconstituted with DOPC (1,2-didecanoyl-sn-glycero-3-phosphocholine). According to the light-induced difference spectroscopy, rhodopsins in 0.02% DDM clearly showed photointermediates like M, and O states which respond to the different wavelengths, respectively and showed the best signal/noise ratio. The laser-induced difference spectra showed the fast formation and decay rate of photointermediates in the DDM solubilized samples than gel encapsulated rhodopsin. Each of rhodopsins seemed to be adapted to its surrounding environment.

Postharvest biological control of garlic blue mold rot caused by Pantoea agglomereans and its mode of action

  • Kwon, Mi-Kyung;Kim, Yong-Ki;Shim, Hong-Sik;Park, Kyung-Suk;Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.104.1-104
    • /
    • 2003
  • To screen for potential biocontrol agents against postharvest disease of garlics caused by Penicillium hirsutum, a total of 933 isolates (432 fungi and 501 bacteria) were isolated from the rhizoshere or rhizoplane of garlics. Among them, Pantoea agglomerans isolate 59-4 (Pa 59-4) was selected for a potential biocontrol agent by in vivo wounded garlic bulb assay, When the spore suspension (10$\^$5/ spores/$m\ell$) of Penicillium hirsutum was co-inoculated with spore or cell suspension of each fungal or bacterial isolate on wounded garlics, the isolate highly suppressed disease development. Soaking garlic bulbs in the suspension of Pa 59-4 significantly reduced garlic decay from p. hirsutum. However, Pa 59-4 did not inhibit the mycelial growth of P. hirsutum in dual-culture with P. hirsutum on Tryptic soy agar. In order to elucidate mode of action of Pa 59-4 nutrient competition between Pa 59-4 and P. hirsutum was investigated using tissue culture plates with cylinder inserts containing defusing membrane reported by Janisiewicz et al. The results showed that Pa 59-4 effectively suppressed spore germination and mycelial growth of blue mold in the low concentration (0.5%) of garlic juice, but did not suppress those of blue mold in the higher concentration (5%) of garlic juice. This result suggests that the mechanism in biocontrol of garlic blue mold by Pa 59-4 may involve in nutrient competition with P. hirsutum on garlic bulbs.

  • PDF