• Title/Summary/Keyword: Biological Activated Carbon

Search Result 221, Processing Time 0.03 seconds

Performance of Backwashing Process in Biological Activated Carbon Column (생물활성탄접촉조에서 역세척 공정의 성능)

  • Lee, Gangchoon;Yoon, Taekyung;Moon, Byunghyun;Noh, ByeongIl
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1082-1087
    • /
    • 2006
  • BAC backwashing process in ozone-BAC advanced water treatment process was experimentally studied. The operation and performance of backwashing were evaluated by measuring the effects of water temperature and water input rate on the backwashing interval and duration, and also the change of the amounts of biofilm and HPC in treated water before and after backwashing. The experiments were carried out with the pilot scale test module built in a existing water treatment plant, and the following results were obtained. Longer backwashing time than that of design operating condition was needed for satisfying the suitable turbidity of washing water effluent. Depending on water temperature, 7 days of backwashing cycle was recommended for the period lower than $15^{\circ}C$, and 10 days for the period higher than $15^{\circ}C$. After backwashing, the amounts of biofilm and HPC decreased to 1/10 and 80%, respectively.

Removal of Ammonia Nitrogen and Organics from Piggery Wastewater Using BACC Process-II. Effect of COD/N on Removal of NItrogen and Organics (BACC를 이용한 축산폐수의 암모니아성 질소 및 유기물의 제거 II. COD/N비가 질소 및 유기물 제거에 미치는 영향)

  • 성기달;류원률;김인환;조무환
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.140-145
    • /
    • 2001
  • To treat piggery wastewater containing refractory compounds including nitrogen, physical treatments using zeolite and biological processes were investigated. In biogical treatment, the removal efficiencies of organics and nitrogen in bioreador using BACC (Biological Activated Carbon Cartridge) media filled with granule activated carbon were examined. The best removal efficiencies achieved for TKN and COD(sub)cr were 82% and 53% respectively, when zeolite dosage was 300 g/L. Specific nitrogen removal ability was 3.2 mg/g at a zeolite dosage of 50 g/L, whereas specific nitrogen removal ability was 1.8 mg/g at a zeolite dosage of 300 g/L. The increased of C/N ratio resulting from the removal of nitrogen using zeolite led to an increase in removal efficiency of organics. As C/N ratio was increased to 2.0, 2.44 and 6.58 at a HRT of 48 hours in a BACC bioreactor, removal efficiencies of COD(sub)cr were increased to 53.5%, 57.4% and 80.6%. The removal efficiency of wastewater using a zeolite dosage of 399 g/L was increased by 27.1% compared to that of control treatment.

  • PDF

Electromagnetic Interference Shielding Characteristics of Electroless Nickel Plated Carbon Nanotubes (무전해 니켈 도금된 탄소나노튜브의 전자파 차폐 특성)

  • Kim, Do Young;Yun, Kug Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.268-273
    • /
    • 2014
  • In this study, multi-walled carbon nanotubes (MWCNT) were treated with nickel by electroless plating method for improving electromagnetic interference (EMI) shielding performance of MWCNT. The physical properties of electroless plated MWCNT were analyzed by using ultra-high resolution scanning electron microscope (UHR-SEM), thermogravimetry (TGA), sheet resistance analyzer and EMI shielding analyzer. EMI shielding efficiencies of nickel electroless plated MWCNT were measured to be 16 dB from 800 MHz band, which was 1.6 times increased compared to that of the activated MWCNT. Also, the average sheet resistance of nickel electroless plated MWCNT was measured to be $70{\Omega}/sq$, which was 56% decreased compared to that of the activated MWCNT. This result could be attributed to the plating morphology on the surface of MWCNT. This result could be attributed to uniformity of plating morphology on the surface, which has more effect on EMI shielding efficiency than the amount of nickel plating.

A Study on Microbial Degradation for Removal of Toluene Vapour by Biofilter (Bio 필터를 이용한 Toluene 제거에서 미생물분해에 관한 연구)

  • 하상안;강신묵
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.24-30
    • /
    • 1999
  • A biological filter for treatment of toluene among volatile organic compounds was studied. The investigation was conducted using specially built stainless steel columns packed with granular activated carbon and cold for removal of toluene. The G.A. and mold as filter material was also coated with Pseudomonas putida microorganisms.The biofilter unit was operated in the condition of moisture content vairation at gas loading rate of 12.5 l/min. Gaseous toluene taken from tedlar bag was analyzed by the use of G.C equipped with F.I.d detector. The removal efficiency of gaseous toluene was 95% at average inlet concentration of 950 ppm during bio-degradation operating condition. Effective removal efficiency was obtained with moisture content 27.5% at activated carbon and 32% at mold in this study. The effective operating condition were obtained with pH 6-8, temperature 28-42℃ for microbial degradation at gas loading rate of 12.5 l/min in packed material.

  • PDF

Adsorption Characteristics of Organic Compounds on the Activated Carbon Fiber(II) (섬유상활성탄(纖維狀活性炭)에 의한 유기화합물(有機化合物)의 흡착특성(吸着特性)(II))

  • Sohn, Jin-Eon;Lee, Si-Won
    • Elastomers and Composites
    • /
    • v.24 no.2
    • /
    • pp.105-109
    • /
    • 1989
  • Liquid phase adsorption of organic compounds solution on the activated carbon fiber was measured by chromatographic method in a packed column. Adsorption equilibrium constant Ka of dextrose solution was found to be $72.5cm^3/g$ on ACF without bacteria growth, while in the bacterial ACF packed column Ka was $87.9cm^3/g$. It is suggested that for biological ACF there is a large contribution of bacterial activity to the adsorption equilibrium constant. Axial dispersion coefficient Ez was determined to be in proportional to flow rate and Pe=dpu/Ez independent or existence or bacteria.

  • PDF

Seasonal variation of assimilable organic carbon and its impact to the biostability of drinking water

  • Choi, Yonkyu;Park, Hyeon;Lee, Manho;Lee, Gun-Soo;Choi, Young-june
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.501-512
    • /
    • 2019
  • The seasonal effects on the biostability of drinking water were investigated by comparing the seasonal variation of assimilable organic carbon (AOC) in full-scale water treatment process and adsorption of AOC by three filling materials in lab-scale column test. In full-scale, pre-chlorination and ozonation significantly increase $AOC_{P17\;(Pseudomonas\;fluorescens\;P17)}$ and $AOC_{NOX\;(Aquaspirillum\;sp.\;NOX)}$, respectively. AOC formation by oxidation could increase with temperature, but the increased AOC could affect the biostability of the following processes more significantly in winter than in warm seasons due to the low biodegradation in the pipes and the processes at low temperature. $AOC_{P17}$ was mainly removed by coagulation-sedimentation process, especially in cold season. Rapid filtration could effectively remove AOC only during warm seasons by primarily biodegradation, but biological activated carbon filtration could remove AOC in all seasons by biodegradation during warm season and by adsorption and bio-regeneration during cold season. The adsorption by granular activated carbon and anthracite showed inverse relationship with water temperature. The advanced treatment can contribute to enhance the biostability in the distribution system by reducing AOC formation potential and helping to maintain stable residual chlorine after post-chlorination.

Transformations of 2,4,6-Trinitrotoluene in Various Conditions by Klebsiella sp. Strain C1 Isolated from Activated Sludge

  • Chang, Chong-Suk;Kim, Hyoun-Young;Kang, Yang-Mi;Bae, Kyung-Sook;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.193-198
    • /
    • 2002
  • Several 2,4,6-trinitrotoluene (TNT) degrading bacteria were isolated from an activated sludge by an enrichment culture technique, and their TNT removal activities were examined. Among the isolates, strain C1 showed the highest degrading capability, and completely removed 100 or 200 mg I$\^$-1/ of TNT within 6 hours of incubation. This bacterium was identified as Klebsiella sp. The effects of different carbon sources on the removal of the parent TNT by Klebsiella sp. C1 were negligible, but the transformation rates of TNT metabolites such as amino-dinitrotoluenes and diamino-nitrotoluenes were higher with fructose addition compared to glucose addition. When nitrate was used as the nitrogen source, the degradation rates of TNT and hydroxylamino-dinitrotoluenes were higher than those with the ammonium addition. Although the TNT removal rate of Klebsiella sp. C1 was slightly higher in anaerobic conditions, the further transformations of TNT metabolites were more favorable in aerobic conditions.

Development of Adsorbent for Heavy Metals by Activation of the Bark (활성화 수피를 이용한 중금속 흡착제 개발)

  • Park, Chang-Jin;Yang, Jae-E.;Ryu, Kyeong-Ryeol;Zhang, Yong-Seon;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.240-244
    • /
    • 2004
  • The objective of this research was to develop the adsorbent far heavy metals by activating the bark sample. Barks from pine tree with diameters of $2{\sim}4\;mm$ were activated in the muffle furnace under a high relative humidity condition at temperatures of $600{\sim}900^{\circ}C$. The removal efficiency of the activated bark (ACTBARK) for Cu and Cd was temperature dependent showing the order of $900^{\circ}C$ > $800^{\circ}C$ > $700^{\circ}C$ > $600^{\circ}C$. The critical temperature was considered to be $900^{\circ}C$ to become an efficient adsorbent for Cu and Cd. The bark samples activated at temperatures lower than $700^{\circ}C$ showed a less removal efficiency than the crude bark. The ACTBARK activated at $900^{\circ}C$ removed more Cu and Cd from solution than the commercial activated carbon and charcoal. The ACTBARK (activated at $900^{\circ}C$) adsorbed all of the Cu and Cd in solution with concentrations less than 150 mg/L. The selectivity of the ACTBARK was in the order of Cu > Zn > Ni > Pb > Fe > Cd > Mn.

Nutrient Removal Using Fermented Organic Acids Derived from the Primary Sludge in the Intermittent Aeration Activated Sludge Process

  • Weon, Seung-Yeon;Lee, Sang-Il;Lee, Chan-Won
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.213-218
    • /
    • 2011
  • The two-stage intermittent aeration activated sludge process (IAP) and dynamic-flow intermittent aeration activated sludge process (DFP) were investigated for the nutrient removal of domestic wastewater. Three sets of IAP and one set of DFP were operated. The fermented settled sludge taken from the primary settling tank was added to two IAP and one DFP as an external electron donor, with one IAP, in which an external carbon source was not added, as a control. All the systems were operated at a sludge retention time of 20 days and a hydraulic retention time of 12 hr. A Higher denitrification rate was observed with the fermented settled sludge for the denitrification compared to the process without the addition of the organic source. The result indicates that the fermented acid from the primary domestic sludge has been proved to be an excellent electron donor for denitrification and biological phosphorus removal with IAP and DFP in treating relatively low C/N ratio(Carbon / Nitrogen ratio) wastewater. Phosphate accumulating organisms have a capability of competing with denitrifiers in the presence of volatile organic acids under anoxic conditions.

Electrochemical Properties of Activated Carbon Supecapacitor Adopting Poly(acrylonitrile) Separator Coated by Polymer-Alkaline Electrolytes (고분자-알칼리 전해질이 코팅된 Poly(acrylonitrile) 분리막을 적용한 활성탄 수퍼커패시터 특성)

  • Kim, Kwang Man;Lee, Young-Gi;Ko, Jang Myoun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.467-472
    • /
    • 2017
  • Alkaline electrolytes consisting of 6 M KOH and polymer (PEO, PVA, and PAAK) are coated on PAN nonwoven fabrics as a separator, and the electrochemical properties of the activated carbon supercapacitor adopting them are investigated in terms of redox behavior, specific capacitance, and interfacial impedance. Although the interaction between polymer and KOH are comparatively inactive in PEO and PVA, PAAK (3 wt.%)-KOH forms a hydrogel phase by active interactions between $COO^-K^+$ in side-chain of PAAK and $K^+OH^-$ from alkaline electrolyte solution, improving ionic conduction of electrolytes and the electrochemical properties of the supercapacitor. As a result, the activated supercapacitor adopting the PAAK-KOH shows the superior specific capacitance of $46.8Fg^{-1}$ at $100mVs^{-1}$.