• 제목/요약/키워드: Biological Activated Carbon

검색결과 221건 처리시간 0.02초

양파즙을 사용한 알코올 음료 제조를 위한 최적조건 검토 (Analysis of Optimum Condition for Alcoholic Drink Production Using Onion Extract.)

  • 김삼웅;오은혜;전홍기
    • 생명과학회지
    • /
    • 제18권6호
    • /
    • pp.871-877
    • /
    • 2008
  • 이 연구는 양파즙을 이용한 알코올 음료의 개발을 위해 수행되었다. 양파는 당, 아미노산과 다양한 영양분을 기인하여 알코올 음료 개발을 위해 적절한 원료로 고려된다. 양파에서 알코올 발효를 위한 효모를 선별하기 위해 시판중인 효모를 양파배지에서 순화시켰다. 양파배지에서 성장하는 19 균주를 사용하여 알코올 생성능을 확인해 본 결과 OJ-8이 가장 높은 것으로 나타났다. 양파의 특이 냄새를 제거하기 위해 여러 가지 방법으로 냄새를 제거한 결과 열을 가하거나 활성탄을 처리하면 효과가 있는 것으로 나타났다. 그래서 액량에 대해 20% 활성탄을 30 분간 처리하고 $100^{\circ}C$ 40분간 열처리를 하면 효과적으로 냄새를 제거하는 것으로 나타났다. 양파즙을 이용하여 효과적으로 발효를 수행할 수 있는 조건의 검사 결과는 5% 접종량으로 $25^{\circ}C$ 5일 동안 정치배양하면 최대의 수율을 얻을 수 있었다.

EVA 수지 이용 연료유 생성을 위한 열분해 반응에서 실리카-알루미나 계열 무기물의 영향 (The Effects of Silica-Alumina Type Inorganic Compounds on the Pyrolysis Reaction of EVA to Produce Fuel-Oil)

  • 박영철;최주홍;오세희
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.706-713
    • /
    • 2011
  • The effects of silica-alumina type catalysts addition on the thermal decomposition of ethylene vinyl acetate (EVA) resin have been studied in a thermal analyzer (TGA, DSC) and a small batch reactor. The silica-alumina type compounds tested were kaolinite, bentonite, perlite, activated clay and clay. As the results of TGA experiments, pyrolysis starting temperature for EVA resin had the 1st pyrolysis temperature range of 300~$400^{\circ}C$ and the 2nd pyrolysis temperature range of 425~$525^{\circ}C$. The silica-alumina type catalysts did not affect the pyrolysis rate in EVA pyrolysis reaction. In the DSC experiments, addition of kaolinite and bentonite catalysts reduced the heat of fusion and heat of 2nd pyrolysis reaction. In the batch system experiments, the mixing of silica-alumina type catalysts enhanced the yield of fuel oil, and affected to the distribution of carbon numbers. In the silica-alumina type inorganic material used in this experiments, bentonite was the most effective from the pyrolysis heat, yields, and the characteristics of fuel oil.

이차전지 음극재 탄소 소재 재활용에 대한 연구 (A Study on the Recycle of Carbon Material in Anode of Secondary Battery)

  • 한경재;김유진;윤성진;강유진;장민혁;조형근;조혜령;서동진;박주일
    • 유기물자원화
    • /
    • 제30권4호
    • /
    • pp.59-66
    • /
    • 2022
  • 리튬이온 배터리는 휴대폰 시장과 함께 크게 확대되었고 전기 자동차 사업이 본격적으로 활성화됨에 따라, 이후에도 많은 사람의 관심을 끌게 될 분야이다. 지금까지는 리튬이온 배터리 내부에 있는 유가금속에 대한 회수에 많은 사람이 관심을 끌고 있지만, 음극재로서 주로 활용되는 흑연 또한 재활용가치는 충분하다. 따라서 순도 높은 흑연의 회수와 유가금속의 회수를 함께 하기 위해, 폐 리튬이온 배터리로부터 흑연의 정제 및 분리, 흑연의 전기적 특성을 회복하는 재생과정을 통해 다시금 이차전지의 음극재로써 활용할 수 있는 흑연을 만들어 내는 과정을 가지게 할 것이다. 본 논문에서는 폐 흑연을 재생 흑연으로 바꾸는 과정과 재생 흑연이 가져오는 경제적 효과를 기술한다.

Characterization of TCE-Degrading Bacteria and Their Application to Wastewater Treatment

  • Lee, Wan-Seok;Park, Chan-Sun;Kim, Jang-Eok;Yoon, Byung-Dae;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.569-575
    • /
    • 2002
  • Two bacterial strains capable of degrading trichloroethylene (TCE), isolated form soils contaminated with various chlorinated alkenes, were identified as Alcaligenes odorous N6 and Nocardia sp. Hl7. In addition, four KCTC strains, including three strains of Pseudomonas putida and one strain of Sphingomonas chlorophenolica, exhibited an ability to degrade toluene. A. odorans N6 and Nocardia sp. H17 degraded 84% of the initial amount of TCE in a basal salts medium (BSM), containing 0.2 mM TCE as the sole source of carbon and energy, in a day. The optimal pH for growth was within a range of 7.0-8.0. A mixed culture of the four toluene-degrading isolates degraded 95% of 0.2 mM TCE with 1.5 mM toluene as an inducer, whereas no TCE was degraded by the same mixture without an inducer. When a mixed culture of all 6 isolates was used, the degradation efficiency of 0.2 mM TCE was 72% without an inducer, in a day, and 82% with toluene as an inducer. In a continuous treatment, 1,000 mg/1 of TCE in an artificial wastewater was completely removed within 18 h when an activated sludge was used along with the microbial mixture, which was 27 h laster than when only an activated sludge was used. Accordingly, it would appear that such a microbial mixture could be effectively applied to the biological treatment of wastewater containing TCE with or without an inducer.

간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리 (Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed)

  • 김규연;이동훈
    • 유기물자원화
    • /
    • 제13권4호
    • /
    • pp.136-147
    • /
    • 2005
  • 난분해성 유기물과 암모니아성 질소의 동시제거를 위해 간헐폭기 생물활성탄 유동상법을 이용하여 고농도 유기물함유 침출수에 대하여 실험을 수행하였다. 간헐폭기시 고려되어야 하는 폭기 시간과 비폭기 시간에 대하여 실험적 검토를 수행하였고 자동컴퓨터제어 가능성에 대하여 고찰하여 보았다. 그 결과 생물활성탄 유동상 반응조에 충전한 활성탄의 물리적 흡착능은 초기의 처리효율에 크게 기여하였으며 간헐폭기 생물활성탄 유동상에 의한 침출수 처리시 정상상태에 도달하는 시간은 40일 정도이었고 TOC와 암모니아성 질소 처리시 양호한 프로세스임을 알 수 있었다. 폭기 및 비폭기시간은 60분 폭기/60분 비폭기의 조건이 30분 폭기/90분 비폭기에 비해 처리효율이 양호하게 나타났고 고농도 유기물함유 침출수 처리실험에서 간헐폭기 생물활성탄 유동상에 의한 처리방법은 높은 TOC제거율, 질산화율 및 탈질율, 난분해성 유기탄소 제거율을 확인할 수 있었다. 또한 간헐폭기시 ORP 곡선의 변화에서 나타나는 굴곡점은 무산소상태의 종결점을 나타내는 파라메터로 이용가능하며 이를 간헐폭기 반응조의 최적 운전모드를 설정하는데 응용할 경우 소규모 자동화가 가능할 것으로 판단되었다.

  • PDF

Caffeine과 Carbamazepine: 낙동강 수계에서의 검출 및 정수처리 공정에서의 거동 (Caffeine and Carbamazepine: Detection in Nakdong River Basin and Behavior under Drinking Water Treatment Processes)

  • 손희종;염훈식;정종문;장성호;김한수
    • 한국환경과학회지
    • /
    • 제21권7호
    • /
    • pp.837-843
    • /
    • 2012
  • The aims of this study were to investigated the occurrence of caffeine and carbamazepine in Nakdong river basin (8 mainstreams and 2 tributaries) and the behavior of caffeine and carbamazepine under drinking water treatment processes (conventional and advanced processes). The examination results showed that caffeine was detected at all sampling sites (5.4~558.5 ng/L), but carbamazepine was detected at five sampling sites (5.1~79.4 ng/L). The highest concentration level of caffeine and carbamazepine in the mainstream and tributaries in Nakdong river were Goryeong and Jinchun-cheon, respectively. These pharmaceutical products were completely removed when they were subject to conventional plus advanced processes of drinking water treatment processes. Conventional processes of coagulation, sedimentation and sand-filtration were not effective for their removal, while advanced processes of ozonation and biological activated carbon (BAC) filtration were effective. Among these pharmaceuticals, carbamazeoine was more subject to ozonation than caffeine.

덕산(德山) 정수장(淨水場)에서의 BAC Pilot plant에 관한 연구(硏究) (A study on the BAC pilot plant in the Duk-san water works)

  • 이상봉;김동윤;임정아;이원권
    • 상하수도학회지
    • /
    • 제9권2호
    • /
    • pp.97-107
    • /
    • 1995
  • Today a conventional water treatment system has many problems. The ozone/GAC process, sometimes termed Biological Activated Carbon(BAC), appeared to be effective for the removal of soluble organic matters in the drinking water. The water quality of Nak-dong river in Pusan, generally shows BDOC 30-40% and NBDOC 60-70%. The pilot plant installed at the Duk-san water works that was been largest treatability(1,650,000ton/day) in Pusan. A experimental water in the pilot plant made use of the water after sand-filteration. Following results are drawn from this study. Initial adsorption velocity($DOC/DOC_o/T$) in the pure adsorption of GAG had a 0.0225, it's velocity changed to 0.006 after ozone added and the optimum ozone dose ranged of $1.4-2.0mgO_3/L$. A experimental water in the pilot plant composed with humic material(78%). Humic material composed with humic acid(20%) and fulvic acid(56%), and it's rate changed to 18 and 50% respectively after ozone added. DOC constantly decreased in the EBCTs and removal efficieny in the 15min of EBCT was 45-50%. It showed the largest removal rate of BDOC in the EBCT 5 and among the season, characteristics of removal varied. The HPC distributed over $10^6-10^7CFU/cm^3$ in the bed depth and among the season, distribution of HPC were differential.

  • PDF

철 코팅 규사의 인산이온 제거 효율 평가 연구 (A study on the evaluation of phosphate removal efficiency using Fe-coated silica sand)

  • 조은영;김영희;박찬규
    • 상하수도학회지
    • /
    • 제31권6호
    • /
    • pp.521-527
    • /
    • 2017
  • Phosphorus is one of the limiting nutrients for the growth of phytoplankton and algae and is therefore one of leading causes of eutrophication. Most phosphorous in water is present in the form of phosphates. Different technologies have been applied for phosphate removal from wastewater, such as physical, chemical precipitation by using ferric, calcium or aluminum salts, biological, and adsorption. Adsorption is one of efficient method to remove phosphates in wastewater. To find the optimal media for phosphate removal, physical characteristics of media was analysed, and the phosphate removal efficiency of media (silica sand, slag, zeolite, activated carbon) was also investigated in this study. Silica sand showed highest relative density and wear rate, and phosphate removal efficiency. Silica sand removed about 36% of phosphate. To improve the phosphate removal efficiency of silica sand, Fe coating was conducted. Fe coated silica sand showed 3 times higher removal efficiency than non-coated one.

$H_2/Ar$ 혼합기체의 PSA 공정 실험과 모사 (Experiment and Simulation of PSA Process for $H_2/Ar$ Mixtures gas)

  • 강석현;정병만;최현우;김성현;이병권;최대기
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.180-190
    • /
    • 2005
  • The PSA cycle was performed for the separation of binary gas mixture $H_2/Ar$ (80%/20%) using the six-step two-bed process. Adsorption equilibrium contains a LRC model for equilibrium adsorption isotherms and a LDF model for mass transfer. Aspen ADSIM, simulator was applied to predict the separation performance. The effect of cycle parameters such as feed rate, adsorption pressure and P/F ratio on the separation of hydrogen has been studied in experiment and simulation. In the results, maximize the recovery of hydrogen as a high purity was 13LPM feed flowrate, 120sec adsorption time, 11atm adsorption pressure and 0.1 P/F ratio in a cyclic steady-state come out since 10th cycle.

정수처리공정상 염소소독부산물형성에 미치는 오존의 영향 (Ozone Effect on the Formation of Chlorine Disinfection Byproducts in Water Treatment Process)

  • 성낙창;박현석;이성식;이용희;이종팔;윤태경
    • 한국환경과학회지
    • /
    • 제13권1호
    • /
    • pp.55-59
    • /
    • 2004
  • The effect of ozone on the formation and the removal of disinfection byproducts(DBPs) of chlorination process was studied to elucidate the performance of water treatment process. The samples of raw water, prechlorination process, and preozonation process were analyzed quantitatively according to the Standard Methods for the Examination of drinking water. As a result, most of total trihalomethanes(THMs) which were formed in prechlorine treatment process was not removed in the preozonation process. Most of haloacetic acids(HAAs), haloacetonitriles(HANs), and chloral hydrate(CH) was removed in sedimentation and biological activated carbon(BAC) filtration processes. However, DBPs were increased more or less by postchlorine step. In particular, the formation of THMs and HAAs depends on ozone more than chlorine, but, the formation of HANs and CH depends on chlorine more than ozone. The seasonal variation of DBPs concentration for the year needs to be investigated to study the temperature effect because DBPs strongly depend on temperature among various efficient factors.