• 제목/요약/키워드: Bioinformatic

검색결과 173건 처리시간 0.024초

Application of digital polymerase chain reaction technology for noninvasive prenatal test

  • Lee, Seung Yong;Hwang, Seung Yong
    • Journal of Genetic Medicine
    • /
    • 제12권2호
    • /
    • pp.72-78
    • /
    • 2015
  • Recently, noninvasive prenatal test (NIPT) has been adopted as a primary screening tool for fetal chromosomal aneuploidy. The principle of NIPT lies in isolating the fetal fraction of cell-free DNA in maternal plasma and analyzing it with bioinformatic tools to measure the amount of gene from the target chromosome, such as chromosomes 21, 18, and 13. NIPT will contribute to decreasing the need for unnecessary invasive procedures, including amniocentesis and chorionic villi sampling, for confirming fetal aneuploidy because of its higher positive predictive value than that of the conventional prenatal screening method. However, its greater cost than that of the current antenatal screening protocol may be an obstacle to the adoption of this innovative technique in clinical practice. Digital polymerase chain reaction (dPCR) is a novel approach for detecting and quantifying nucleic acid. dPCR provides real-time diagnostic advantages with higher sensitivity, accuracy, and absolute quantification than conventional quantitative PCR. Since the groundbreaking discovery that fetal cell-free nucleic acid exists in maternal plasma was reported, dPCR has been used for the quantification of fetal DNA and for screening for fetal aneuploidy. It has been suggested that dPCR will decrease the cost by targeting specific sequences in the target chromosome, and dPCR-based noninvasive testing will facilitate progress toward the implementation of a noninvasive approach for screening for trisomy 21, 18, and 13. In this review, we highlight the principle of dPCR and discuss its future implications in clinical practice.

Integrated Bioinformatics Approach Reveals Crosstalk Between Tumor Stroma and Peripheral Blood Mononuclear Cells in Breast Cancer

  • He, Lang;Wang, Dan;Wei, Na;Guo, Zheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1003-1008
    • /
    • 2016
  • Breast cancer is now the leading cause of cancer death in women worldwide. Cancer progression is driven not only by cancer cell intrinsic alterations and interactions with tumor microenvironment, but also by systemic effects. Integration of multiple profiling data may provide insights into the underlying molecular mechanisms of complex systemic processes. We performed a bioinformatic analysis of two public available microarray datasets for breast tumor stroma and peripheral blood mononuclear cells, featuring integrated transcriptomics data, protein-protein interactions (PPIs) and protein subcellular localization, to identify genes and biological pathways that contribute to dialogue between tumor stroma and the peripheral circulation. Genes of the integrin family as well as CXCR4 proved to be hub nodes of the crosstalk network and may play an important role in response to stroma-derived chemoattractants. This study pointed to potential for development of therapeutic strategies that target systemic signals travelling through the circulation and interdict tumor cell recruitment.

Tail-to-Head Tandem Duplication and Simple Repetitive Sequences of the Cytoplasmic Actin Genes in Greenling Hexagrammos otakii (Teleostei; Scorpaeniformes)

  • Lee, Sang-Yoon;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제14권4호
    • /
    • pp.303-310
    • /
    • 2011
  • We characterized a cytoplasmic actin gene locus in greenling Hexagrammos otakii (Scorpaeniformes). Genomic clones isolated from the greenling DNA library contained two homologous cytoplasmic actin gene copies (HObact2.1 and HObact2.2) in a tail-to-head orientation. Their gene structure is characterized by six translated exons and one non-translated exon. Exon-intron organization and the nucleotide sequences of the two actin gene isoforms are very similar. However, only the HObact2.1 isoform contains microsatellite-like, dinucleotide repeats in the 5'-flanking region (named HOms2002) and intron 1 following the non-translated exon 1 (named HOms769). One microsatellite locus (HOms769) was highly polymorphic while the other (HOms2002) was not. Based on bioinformatic analysis, different transcription factor binding motifs are related to stress and immune responses in the two actin isoforms. Semiquantitative and real-time reverse transcription-PCR assays showed that both isoform transcripts were detectable ubiquitously in all the tissues examined. However, the basal expression levels of each isoform varied across tissues. Overall, the two isoforms showed a similar, but not identical, expression pattern. Our data suggest that the cytoplasmic actin genes may be the result of a recent duplication event in the greenling genome, which has not experienced significant subfunctionalization in their housekeeping roles.

Molecular Characterization and Expression Pattern of Na+-K+-2Cl- Cotransporter 2 (NKCC2) in the Intestine of Starry Flounder Platichthys stellatus after Bacterial Challenge

  • Kim, Yi Kyung;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제18권2호
    • /
    • pp.173-181
    • /
    • 2015
  • We identified the $Na^+-K^+-2Cl^-$ cotransporter 2 (NKCC2) cDNA isoform from starry flounder, Platichthys stellate. The NKCC2 cDNA encoded a polypeptide of 1,043 amino acids representing 12 putative transmembrane domains based on the bioinformatic topology prediction. In addition, starry flounder NKCC2 possessed highly conserved residues within transmembrane domain 4, known as an essential site for its function. End-point reverse transcription-polymerase chain reaction analysis revealed that the NKCC2 transcript was moderately expressed only in the anterior and posterior intestines and the rectum. The NKCC2 mRNA level in the rectum, but not in other segments, was significantly induced 3 days post Streptococcus parauberis challenge, indicating that excess salt may be transported into the rectum. Taken together, our data indicate that an S. parauberis infection could tip the intestinal fluid balance in favor of fluid accumulation, indicating that bacterial pathogens can interfere with intestinal osmotic balance and normal mucosal immune homeostasis.

Diversification and domain evolution of molluskan metallothioneins: a mini review

  • Nam, Yoon Kwon;Kim, Eun Jeong
    • Fisheries and Aquatic Sciences
    • /
    • 제20권6호
    • /
    • pp.8.1-8.18
    • /
    • 2017
  • Background: Metallothionein (MT) is a multifunctional protein playing important roles in homeostatic regulation and detoxification of metals. Mollusk species have been considered as useful sentinel platforms for MT-based biomarker approaches, and they have been reported to display an extraordinary structural diversity of MT proteins. However, potential diversity of molluskan MTs has not been fully explored and recent updates have suggested the need of revision of evolutionary hypothesis for molluskan MTs. Results: Based on bioinformatic analysis and phylogenetic evidences, novel divergence mechanisms and paths were hypothesized in both gastropod and bivalve MT groups. Our analyses are suggestive of the taxon- or lineage-specific domain multiplication/duplication from the ancestral or prototypic MT. Diversification and selection of molluskan MTs might be driven by the needs for acquiring metal selectiveness, specialized novel function, and improved capacity of metal detoxification under environmentally stressed conditions. Conclusion: The structural diversity and variations of molluskan MTs are significantly larger than previously understood. Undoubtedly, molluskan MTs have undergone dynamic divergent processes in their evolutionary histories, giving rise to the great diversity of domain structures in extant MT isoforms. Novel evolutionary paths for molluskan MTs newly proposed in this review could shed additional light onto the revision of the hypothesis for evolutionary differentiation of MTs in the molluskan lineage.

위해성평가와 관리를 고려한 유전자변형작물 개발의 필요성 (Development of genetically modified crops based on considerations of risk assessment and management)

  • 김창기;정순천;윤원기;박기웅;최경화;김환묵
    • Journal of Plant Biotechnology
    • /
    • 제36권4호
    • /
    • pp.360-365
    • /
    • 2009
  • Over the last five years, we have conducted research on risk assessment of domestically developed genetically modified (GM) crops and found a number of factors which could delay risk assessment process. In this review, we described such cases and discussed the problem of transgene cassette integration, the lack of information on vectors, the poor quality control in seed production and absence of bioinformatic analysis on amino acid sequence homology before GM crop development. To solve these problems, we have suggested the introduction of the screening system of elite event before risk assessment process and quality control strategies for GM seed production. In addition, we suggested that the developers of GM crops should understand the importance of risk assessment and management for the commercialization of those crops and consider the biological and ecological characteristics of host plants. Consistent communications may need to be established between GM crop developers, risk assessors and risk managers at the initial stages of GM crop development to reduce trial-and-errors.

In silico approach to calculate the transcript capacity

  • Lee, Young-Sup;Won, Kyung-Hye;Oh, Jae-Don;Shin, Donghyun
    • Genomics & Informatics
    • /
    • 제17권3호
    • /
    • pp.31.1-31.7
    • /
    • 2019
  • We sought the novel concept, transcript capacity (TC) and analyzed TC. Our approach to estimate TC was through an in silico method. TC refers to the capacity that a transcript exerts in a cell as enzyme or protein function after translation. We used the genome-wide association study (GWAS) beta effect and transcription level in RNA-sequencing to estimate TC. The trait was body fat percent and the transcript reads were obtained from the human protein atlas. The assumption was that the GWAS beta effect is the gene's effect and TC was related to the corresponding gene effect and transcript reads. Further, we surveyed gene ontology (GO) in the highest TC and the lowest TC genes. The most frequent GOs with the highest TC were neuronal-related and cell projection organization related. The most frequent GOs with the lowest TC were wound-healing related and embryo development related. We expect that our analysis contributes to estimating TC in the diverse species and playing a benevolent role to the new bioinformatic analysis.

Functional Annotation and Analysis of Korean Patented Biological Sequences Using Bioinformatics

  • Lee, Byung Wook;Kim, Tae Hyung;Kim, Seon Kyu;Kim, Sang Soo;Ryu, Gee Chan;Bhak, Jong
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.269-275
    • /
    • 2006
  • A recent report of the Korean Intellectual Property Office(KIPO) showed that the number of biological sequence-based patents is rapidly increasing in Korea. We present biological features of Korean patented sequences though bioinformatic analysis. The analysis is divided into two steps. The first is an annotation step in which the patented sequences were annotated with the Reference Sequence (RefSeq) database. The second is an association step in which the patented sequences were linked to genes, diseases, pathway, and biological functions. We used Entrez Gene, Online Mendelian Inheritance in Man (OMIM), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) databases. Through the association analysis, we found that nearly 2.6% of human genes were associated with Korean patenting, compared to 20% of human genes in the U.S. patent. The association between the biological functions and the patented sequences indicated that genes whose products act as hormones on defense responses in the extra-cellular environments were the most highly targeted for patenting. The analysis data are available at http://www.patome.net

D-F-M 기반의 생체신호측정기 개발 (Development of a Bio-Signal Measuring System Based on D-F-M)

  • 채용웅;홍동권
    • 한국전자통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.897-902
    • /
    • 2018
  • 본 연구는 D-F-M(Diagnose Fure Funktionelle Medizine) 이론을 기반으로 하여 신체 7부위에 13Hz의 양과 음의 임펄스전압을 인가함으로서 생성된 출력 파형을 이용하여 환자의 건강상태를 진단하는 생체신호 측정기의 개발에 관한 것이다. 측정기에서 취득한 데이터는 인공지능을 기반으로 한 귀납적 추론을 통하여 간엽조직 뿐만 아니라 신체기관의 상태를 진단하는 기기로서의 역할을 수행할 것으로 기대된다. 본 논문에서는 생체신호를 취득하고 관리하는 시스템 하드웨어에 주제를 한정할 것이다.

An overview of current knowledge about cell-free RNA in amniotic fluid

  • Jung, Yong Wook;Shin, Yun Jeong;Shim, Sung Han;Cha, Dong Hyun
    • Journal of Genetic Medicine
    • /
    • 제13권2호
    • /
    • pp.65-71
    • /
    • 2016
  • Cell-free nucleic acids (cf-NAs) originate in trophoblasts and are detected in the maternal plasma. Using innovative bioinformatic technologies such as next-generation sequencing, cf-NAs in the maternal plasma have been rapidly applied in prenatal genetic screening for fetal aneuploidy. Amniotic fluid is a complex and dynamic fluid that provides growth factors and protection to the fetus. In 2001, the presence of cf-NA in amniotic fluid was reported. Amniotic fluid is in direct contact with the fetus and is derived from fetal urine and maternal and fetal plasma. Therefore, these genetic materials have been suggested to reflect fetal health and provide real-time genetic information regarding fetal development. Recently, several studies evaluated the global gene expression changes of amniotic fluid cell-free RNA according to gestational age. In addition, by analyzing the transcriptome in the amniotic fluid of fetal aneuploidy, potential key pathways and novel biomarkers for fetal chromosomal aneuploidy were identified. Here, we review the current knowledge of cell-free RNA in amniotic fluid and suggest future research directions.