• Title/Summary/Keyword: Bioinformatic

Search Result 173, Processing Time 0.022 seconds

The Workflow for Computational Analysis of Single-cell RNA-sequencing Data (단일 세포 RNA 시퀀싱 데이터에 대한 컴퓨터 분석의 작업과정)

  • Sung-Hun WOO;Byung Chul JUNG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.10-20
    • /
    • 2024
  • RNA-sequencing (RNA-seq) is a technique used for providing global patterns of transcriptomes in samples. However, it can only provide the average gene expression across cells and does not address the heterogeneity within the samples. The advances in single-cell RNA sequencing (scRNA-seq) technology have revolutionized our understanding of heterogeneity and the dynamics of gene expression at the single-cell level. For example, scRNA-seq allows us to identify the cell types in complex tissues, which can provide information regarding the alteration of the cell population by perturbations, such as genetic modification. Since its initial introduction, scRNA-seq has rapidly become popular, leading to the development of a huge number of bioinformatic tools. However, the analysis of the big dataset generated from scRNA-seq requires a general understanding of the preprocessing of the dataset and a variety of analytical techniques. Here, we present an overview of the workflow involved in analyzing the scRNA-seq dataset. First, we describe the preprocessing of the dataset, including quality control, normalization, and dimensionality reduction. Then, we introduce the downstream analysis provided with the most commonly used computational packages. This review aims to provide a workflow guideline for new researchers interested in this field.

Polymorphisms and Allele Distribution of Novel Indel Markers in Jeju Black Cattle, Hanwoo and Imported Cattle Breeds (제주흑우, 한우 및 수입 소 품종에서 새로운 indel 마커의 다형성과 대립인자 분포)

  • Han, Sang-Hyun;Kim, Jae-Hwan;Cho, In-Cheol;Cho, Sang-Rae;Cho, Won-Mo;Kim, Sang-Geum;Kim, Yoo-Kyung;Kang, Yong-Jun;Park, Yong-Sang;Kim, Young-Hoon;Park, Se-Phil;Kim, Eun-Young;Lee, Sung-Soo;Ko, Moon-Suck
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1644-1650
    • /
    • 2012
  • The aim of this study was to screen the polymorphisms and distribution of each genotype of insertion/ deletion (indel) markers which were found in a preliminary comparative study of bovine genomic sequence databases. Comparative bioinformatic analyses were first performed between the nucleotide sequences of Bovine Genome Project and those of expressed sequence tag (EST) database, and a total of fifty-one species of indel markers were screened. Of these, forty-two indel markers were evaluated, and nine informative indel markers were ultimately selected for population analysis. Nucleotide sequences of each marker were re-sequenced and their polymorphic patterns were typed in six cattle breeds: Holstein, Angus, Charolais, Hereford, and two Korean native cattle breeds (Hanwoo and Jeju Black cattle). Cattle breeds tested in this study showed polymorphic patterns in eight indel markers but not in the Indel-15 marker in Charolais and Holstein. The results of analysis for Jeju Black cattle (JBC) population indicated an observed heterozygosity (Ho) that was highest in HW_G1 (0.600) and the lowest in Indel_29 (0.274). The PIC value was the highest in HW_G4 (0.373) and lowest in Indel_6 (0.305). These polymorphic indel markers will be useful in supplying genetic information for parentage tests and traceability and to develop a molecular breeding system for improvement of animal production in cattle breeds as well as in the JBC population.

Relationship between porcine miR-20a and its putative target low-density lipoprotein receptor based on dual luciferase reporter gene assays

  • Ding, Yueyun;Zhu, Shujiao;Wu, Chaodong;Qian, Li;Li, DengTao;Wang, Li;Wan, Yuanlang;Zhang, Wei;Yang, Min;Ding, Jian;Wu, Xudong;Zhang, Xiaodong;Gao, Yafei;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.922-929
    • /
    • 2019
  • Objective: Mutations in low-density lipoprotein receptor (LDLR), which encodes a critical protein for cholesterol homeostasis and lipid metabolism in mammals, are involved in cardiometabolic diseases, such as familial hypercholesterolemia in pigs. Whereas microRNAs (miRNAs) can control LDLR regulation, their involvement in circulating cholesterol and lipid levels with respect to cardiometabolic diseases in pigs is unclear. We aimed to identify and analyze LDLR as a potential target gene of SSC-miR-20a. Methods: Bioinformatic analysis predicted that porcine LDLR is a target of SSC-miR-20a. Wild-type and mutant LDLR 3'-untranslated region (UTR) fragments were generated by polymerase chain reaction (PCR) and cloned into the pGL3-Control vector to construct pGL3 Control LDLR wild-3'-UTR and pGL3 Control LDLR mutant-3'-UTR recombinant plasmids, respectively. An miR-20a expression plasmid was constructed by inserting the porcine premiR-20a-coding sequence between the HindIII and BamHI sites in pMR-mCherry, and constructs were confirmed by sequencing. HEK293T cells were co-transfected with the miR-20a expression or pMR-mCherry control plasmids and constructs harboring the corresponding 3'-UTR, and relative luciferase activity was determined. The relative expression levels of miR-20a and LDLR mRNA and their correlation in terms of expression levels in porcine liver tissue were analyzed using reverse-transcription quantitative PCR. Results: Gel electrophoresis and sequencing showed that target gene fragments were successfully cloned, and the three recombinant vectors were successfully constructed. Compared to pMR-mCherry, the miR-20a expression vector significantly inhibited wild-type LDLR3'-UTR-driven (p<0.01), but not mutant LDLR-3'-UTR-driven (p>0.05), luciferase reporter activity. Further, miR-20a and LDLR were expressed at relatively high levels in porcine liver tissues. Pearson correlation analysis revealed that porcine liver miR-20a and LDLR levels were significantly negatively correlated (r = -0.656, p<0.05). Conclusion: LDLR is a potential target of miR-20a, which might directly bind the LDLR 3'-UTR to post-transcriptionally inhibit expression. These results have implications in understanding the pathogenesis and progression of porcine cardiovascular diseases.