• Title/Summary/Keyword: Biohydrogen

Search Result 64, Processing Time 0.022 seconds

Application of Waste Resources for the Stabilization of Heavy Metals (Pb, Cu) in Firing Range Soils (폐자원을 이용한 사격장 토양내 중금속(Pb, Cu) 안정화 처리)

  • Lee, Keun-Young;Moon, Deok-Hyun;Kim, Kyoung-Woong;Cheong, Kyung-Hoon;Kim, Tae-Sung;Khim, Jee-Hyeong;Moon, Kyoung-Ran;Choi, Su-Bin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • In this study, a heavy metal stabilization treatment using waste resource stabilizing agents was utilized on army firing range soil contaminated with Pb and Cu. Both calcined oyster shells (COS; 5% w/w) and waste cow bone (WCB; 3% w/w) were applied for a wet-curing duration of 28 days. Following the stabilization treatment, the process efficiency was evaluated by various extraction methods for Pb and Cu. Neutral and weak acid extraction methods, such as water soluble extraction and SPLP, did not show positive results for heavy metal stabilization with very low leachability. On the other hand, TCLP and 0.1 N HCl extraction showed that the stabilizing agents significantly reduced the amount of the heavy metals leached from the soil, which strongly supports that the treatment efficiency is positively evaluated in acidic leaching conditions. Specifically, in the 0.1 N HCl extraction, the reduction efficiencies of Pb and Cu leaching were 99.9% and 83.9%, respectively. From the sequential extraction results, a difference between Pb and Cu stabilization was observed, which supports that Pb stabilization is more effective due to the formation of insoluble Pb complexes. This study demonstrates that the application of waste resources for the stabilization of heavy metals is feasible.

Stabilization of Pb Contaminated Army Firing Range Soil using Calcined Waste Oyster Shells (소성가공 굴껍질을 이용한 군부대 사격장내 고농도 납 오염토양의 안정화)

  • Moon, Deok-Hyun;Cheong, Kyung-Hoon;Kim, Tae-Sung;Khim, Jee-Hyeong;Choi, Su-Bin;Ok, Yong-Sik;Moon, Ok-Ran
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • The objective of this study was to investigate the effectiveness of stabilization for army firing range soil highly contaminated with Pb (total Pb: 29,000 mg/kg) using calcined waste oyster shells. The calcination was conducted to activate quicklime from calcite. In order to evaluate the effectiveness of calcination, both natural oyster shells (NOS) and calcined oyster shells (COS) were applied to the Pb contaminated soil. Stabilization was conducted by mixing the contaminated soil with oyster shell media at 5-20 wt% and cured for 28 days. Following 28 days of curing, Pb leachability was measured based on the Korean Standard Test method (0.1 N HCl extraction). The treatment results showed that the COS treatment outperformed the NOS treatment. All of the NOS treatments failed to meet the Korean warning standard of 100 mg/kg. However, the Pb concentrations were significantly reduced to 47 mg/kg and 3 mg/kg upon 15 wt% and 20 wt% COS treatments, respectively which passed the Korean warning standard. Moreover, -#20 mesh materials were more effective than the -#10 mesh materials in effectively reducing Pb leachability. The scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) results indicated that Pb immobilization was strongly linked to Al and Si.

Effect of PVA-Encapsulation on Hydrogen Production and Bacterial Community Structure (수소 생산과 세균 군집구조에 미치는 PVA-포괄고정화의 영향)

  • Yun, Jeonghee;Kim, Tae Gwan;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • In this study, the performances of PVA-encapsulation and non-encapsulation in a fed-batch bioreactor system were compared for biohydrogen production. Hydrogen production in the PVA-encapsulation bioreactor was not significantly different in comparison to the non-encapsulation bioreactor. However, the hydrogen gas in the encapsulation bioreactor could be stably produced when it was exposed to environmental difficulties such as pH impact by the accumulation of organic acids as fermentative metabolic products. Bacterial communities by DGGE analysis were differently shifted between the PVA-encapsulation and non-encapsulation bioreactors from the initial sludge. The community of hydrogen producing bacteria was stable during the experimental period in the PVA-encapsulation bioreactor compared to the non-encapsulation method. The absolute quantitation of the DNA copy number by a high-throughput droplet digital PCR system for six genera contributed to hydrogen production showing that the numbers of dominant bacteria existed at similar levels in the two bioreactors regardless of encapsulation. In both of two bioreactors, not only Clostridium and Enterobacter, which are known as anaerobic hydrogen producing bacteria, but also Firmicutes, Ruminococcus and Escherichia existed with $1{\times}10^5-1{\times}10^6$ copy numbers of ml-samples exhibiting rapid growth during the initial operation period.

The Bioleaching of Sphalerite by Moderately Thermophilic Bacteria (고온성 박테리아를 이용한 섬아연석의 용출 특성)

  • Park, Cbeon-Young;Cheong, Kyung-Hoon;Kim, Bong-Ju
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.573-587
    • /
    • 2010
  • Bioleaching experiments were effectively carried out at $42^{\circ}C$, $52^{\circ}C$ and $62^{\circ}C$ to leach the more valuable metal ions from sphalerite using bacteria. The pH values of the bioleaching solution were constantly maintained for 10 days in the range of 2.40 to 2.55. In these bioleaching experiments, rod-shaped bacteria attached to the sphalerite surface were continuously observed in the sample. Along with the increase in the leaching temperatures, the concentration of Zn and Pb increased in the control sample of leachates, whereas the concentration of Fe increased in the sample containing bacteria. At $42^{\circ}C$, $52^{\circ}C$ and $62^{\circ}C$ the biological leaching content of Zn was found to be 9.5, 2.8 and 2.9 times higher than that in the chemical leaching content, respectively. At these temperatures, the content of Pb in the bacterial sample of the leachate was detected to be 14.8, 7.4 and 3.8 times higher than that of the control sample of the leachate, respectively.