• Title/Summary/Keyword: Biofilm reactor

Search Result 191, Processing Time 0.028 seconds

Study of Operation Condition of Biofilter Using Fibril-form Matrix for Odor Gas Removal (악취가스 제거를 위안 섬유상 담체를 적용한 바이오필터 운전조건에 관한 연구)

  • Jeong Gwi-Taek;Lee Gwang-Yeon;Byun Ki-Young;Lee Kyoung-Min;Sunwoo Chang-Shin;Lee Woo-Tae;Park Chan-Young;Kim Do-Hyeong;Cha Jin-Myoung;Jang Young-Seon;Park Don-Hee
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.341-344
    • /
    • 2005
  • This research was performed for developing of biological treatment process of odor gas such as MEK, $H_2S$, and toluene, which was generated from the food waste recycling process. To establish the operational conditions of odor gas removal by small-scale biofiltration equipment, it was continuously operated by using toluene as a treating odor object. When the odor treating microorganisms were adhered to fibril form biofilter, high removal efficiency over $93\%$ was obtained by biofilm formation. At 400 ppm of inlet odor gas concentration and 10 sec of retention time, the removal efficiency was $76\%$ and $93\%$ in 1 st stage reactor and End stage reactor, respectively. However, the removal efficiency remained over $97\%$ at the operational conditions above 15 sec of retention time.

Pre-treatment of River Water Using Biological Aerated Filtration (호기성 생물여과 공정을 이용한 하천수 전처리)

  • Choi, Dong-Ho;Choi, Hyung-Joo;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.276-285
    • /
    • 2006
  • When polluted stream water was treated with biological aerated filter(BAF) in pilot plant, all operation with 90, 60, 45 and 30 min of EBCT at fixed $0.1m^3air/m^2min$ of aeration showed 80% or higher treatment efficiency of particle materials(SS, turbidity and Chl.-a) and 85% or higher efficiency of ammonia nitrogen removal. It was thought that, in case of BOD, biological stability may sufficiently be assured with BAF because grade III or IV inflow water was changed to grade I for outflow water. In case of $COD_{Mn}$, about 60% of removal efficiency was found. When the mechanism of the result was investigated, about 30% of COD materials was produced by algae clogged in the reactor. There was almost no biological decomposition because specific substrate utilization rate of algogenic organic materials were $0.0245mg{\cdot}COD_{Mn}/mg{\cdot}VSS{\cdot}day$, thus partial backwashing(washing the media in 1 m upper of the reactor once a day) was required. It is thought that elevation of removal rate about 10% of $COD_{Mn}$ and 5.5% of $BOD_5$ could be obtained with partial backwashing resulting in assurance of biologically more stable raw water and that saving backwashing water may be significant.

A Study on Optimal Packing Volume of Media in Swirl Flow Biological Fluidized Bed (선회류 생물학적 유동상의 최적 메디아 충전량에 관한 연구)

  • Choi, Doo-Hyoung;Kim, Hwan-Gi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.331-340
    • /
    • 2000
  • The existing two-phase biological fluidized bed has some problems such as limit of oxygen transfer and blockade of fluidized distributor. In this study, three-phase swirl flow biological fluidized bed has designed to solve the problems and to investigate its running characteristics. TOC of influent synthetic wastewater was approximately $70mg/{\ell}$. HRT of reactor was 1.6 hours. Mean particle size of sand, as packing media, was 0.397mm and packing volume was varied from $200m{\ell}/{\ell}$ to $600m{\ell}/{\ell}$ by stages in the bed. The amount of biomass and effluent water quality was throughly investigated in the bed. Showing experiment results from the above conditions, it was possible to solve the problems of existing fluidized bed and to keep DO of $3mg/{\ell}$ or more. And it was also TOC removal rate of 91 to 94 %, MLVSS of 2,360 to $3,860mg/{\ell}$, MLVSS per g-media of 8.4 to 17.3 mg/g, F/M ratio of 0.59 to $1.04kg-TOC/kg-MLVSS{\cdot}day$, biofilm thickness of $35{\sim}71{\mu}m$ and sludge productivity of 1.03 to $2.35kg-SS/m^3{\cdot}day$. Optimal conditions in this experimental were as follows.; those were biofilm thickness of approximately $54{\mu}m$. MLVSS per g-media of 13 mg and media packing volume of 350 to $400m{\ell}/{\ell}$ when F/M ratio was low, treatment efficiency was high and sludge productivity was low. Showing the media with optics microscope in this optimal condition, attached microbes such as Epistylis sp. were observed. From SEM photographs, it showed that Coccus adhere to and grow on the media surface.

  • PDF

Biodeodorization of Trimethylamine by Biofilter Packed with Waste Tire-Chips (폐타이어칩 충진형 바이오 필터에 의한 Trimethylamine 제거)

  • Park, Hun-Ju;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.789-797
    • /
    • 2008
  • This study was conducted to investigate removal characteristics of gaseous trimethylamine(TMA) through biofilter packed with waste tire-chips. The sludge in this experiment was collected from an activated sludge operated in a wastewater treatment facility treating malodorous pollutants. The nominal amount of collected sludge was inoculated through packing materials in the filter. The removal efficiencies for varying concentrations and SVs(Space velocity) were assessed based on TMA, COD$_{Cr}$, NO$_3{^-}$-N, NO$_2{^-}$-N, NH$_4{^+}$-N and EPS(Extracellular Polymeric Substances) in leachate, since biofilter had been steady-stately operated. The influent concentration of 10 ppm of TMA was removed to approximately 95% regardless of changing SV at 120 and 180 hr$^{-1}$, but it was lowered to 80 to 90% at SV 240 hr$^{-1}$. As influent concentration was gradually increased from 5 to 55 ppm, the removal efficiencies of TMA were initially high for 95% in the range of 5 to 10 ppm, but lowered to 80% for 10 to 30 ppm. As a part of kinetic study for TMA decomposition, V$_m$(maximum substrate removal rate) and $K_s$(substrate infinity coefficient) were 14.3 g$\cdot$m$^{-3}$$\cdot$h$^{-1}$ and 0.043 g$\cdot$m$^{-3}$, respectively while adapted period was shown in the range of 100 to 150 hr. Also, the EPS concentration was consistently observed from the leachate showing 100 to 200 ppm, which indicates that biofilm has been continuously formed and sustained throughout tire-chips packed reactor.

A Study on the Removal of Organics and Nutrients in the Process Using Attached Biomass and Aquatic Floating Plants (부착미생물과 부유수생식물을 이용한 공정에서 유기물 및 영양염류 제거에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.323-328
    • /
    • 2008
  • This study was accomplished using Anaerobic/Anoxic/Oxic biofilm reactors with fixed media and post-treatment reactor for natural purification with aquatic floating plants. The objectives of this study was to investigate the characteristics of organics, nitrogen and phosphorus removal from sewage with the HRT. The average removal efficiency of SS and $COD_{Cr}$ increases as increasing the hydraulic retention time (HRT) until 12 hr of the HRT, and it was constant over 12 hr of the HRT. The removal efficiency of them was about 93% and 89% respectively over the 12 hr of HRT. The average $BOD_5$ and $COD_{Mn}$ increases as increasing the HRT and the removal efficiency of them was 84.91 % and 76.03% respectively at the 26 hr of HRT. The removal efficiency of T-N and T-P increases as increasing the HRT until 61 hr of the HRT, and it was constant over 61 hr of the HRT. At the HRT of 61 hr, it was 70.20%, 77.86% respectively. It was found that the optimum HRT was 61 hr in case of the nutrients. Before and after experiment, the nitrogen content was similar in leaves of the water hyacinths but the nitrogen content in roots after experiment was 5.5% more than its content before experiment. It was known that the nitrogen was absorbed by the water hyacinths.

Continuous Measurement of Ammonium-nitrogen and Nitrate-nitrogen using a Ion-Selective Microelectrode (이온선택성 미소전극을 이용한 암모니아성 질소 및 질산성 질소의 연속 농도 측정)

  • Lim, Mi-Ji;Seon, Ji-Yun;Park, Jeung-Jin;Byun, Im-Gyu;Park, Tae-Joo;Lee, Tae-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.718-724
    • /
    • 2008
  • The ion selective microelectrode (ISME) has been used for measuring the ion profile of DO, $NH_4{^+}-N$, $NO_2{^-}-N$ and $NO_3{^-}-N$ in biofilm. In this study we evaluated the detection limit and validity of ISME and applied ISME for the continuous measurement of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration in the modified Ludzack-Ettinger (MLE) process. Average detection limits of $NH_4{^+}-N$ and $NO_3{^-}-N$ ISME were $10^{-4.44}M$ and $10^{-4.62}M$, respectively. Since the ISME with $5{\sim}10{\mu}m$ of tip diameter showed a faster response time than that of $1{\sim}5{\mu}m$, the ISME with a tip diameter of $5{\sim}10{\mu}m$ was fabricated and used to make real-time ion detections. Direct monitoring of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations in the aerobic (2) tank causes the instability of the electromotive force (EMF) for the initial 5~8 hours and also causes remarkable error values of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration. This phenomenon is caused by aeration and mixing in the reactor. Thus, the measuring chamber was newly designed for the aerobic (2) tank and then the EMF of the ISME were stabilized in less than 1 hour. Errors of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration were decreased after stabilization of the EMF. The ISME analysis were well corresponded to the results of auto analyzer and ion chromatography. Consequently, the concentration of $NH_4{^+}-N$ and $NO_3{^-}-N$ could be continuously measured for 178 hours by the ISME.

Hydrophilic Coating and Characterization of PVDF Membrane with Flower Type Cross-section made from Thermally Induced Phase Separation (열유도 상분리로 제조한 플라워 형태 단면을 갖는 PVDF 분리막의 친수성 코팅 및 특성평가)

  • Im, Kwang Seop;Lee, Jeong Woo;Jang, Jae Young;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.362-376
    • /
    • 2019
  • In this study, hydrophilic coating characteristics of PVDF [poly(vinylidene fluoride)] hollow fiber membranes with flower type cross-section prepared by thermally induced phase separation were studied. The hollow fiber used in this study was provided from PureEnvitech Co. Ltd., and the hydrophilic coating experiment was performed with different concentration and number of coating of PEBAX 1657, 2533 and 3533 block copolymer solution using a dip coating method. The hydrophilic coated hollow fiber membrane was characterized to scanning microscope and contact angle measurements to determine the degree of hydrophilization. As a result of SEM characterization, it was confirmed that the thickness of the coating layer increased as the coating concentration increased and the number of coatings increased. Contact angle of surface of hollow fibers decreased as the concentration of the coating solution increased and the number of coatings increased. Gas permeance of oxygen gas was measured for the application of the hydrophilized hollow fiber to Membrane Areated Biofilm Reactor. As a result of gas permeation test, it was confirmed that gas permeance decreased with increasing coating concentration and number of coatings, and the more hydrophilized hollow fiber coated with PEBAX 1657 showed lower gas permeance than those coated with PEBAX 2533 and 3533.

Changes of Nitrifying Bacterial Populations in Anaerobic-Anoxic-Oxic Reactors (혐기-무산소-호기 반응조내 질화세균군의 변화)

  • Park, Jong-Woong;Lee, Young-Ok;Go, Jun-Heok;Ra, Won-Sik;Lim, Uk-Min;Park, Ji-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.138-144
    • /
    • 2005
  • This study was carried out to investigate the changes of nitrifying bacterial populations including Nitrosomonas sp. and Nitrobacter sp. in $A^2/O$ pilot plant with the configuration of anaerobic-anoxic-oxic reactors. The suspended nitrifying bacterial populations in mixed liquor and those of attached populations on granular carrier surface made by molded waste tire were analyzed by Fluorescent in situ Hybridization(FISH) method. The nitrification rate of a pilot plant showed the value of $1.97{\sim}2.98\;mg\;N/g$ MLVSS hr. The ratios of suspended ammonia oxidizer including Nitrosomonas sp. (NSO) to total bacteria in each reactor were oxic < anoxic < anaerobic. On the contrary, the ratios of suspended nitrite oxidizer including Nitrobacter sp. (NIT) were anaerobic < anoxic < oxic. The thickness, dry density and mass of the attached biomass on granular carriers were $180{\sim}188\;{\mu}m$, $38.5{\sim}43.9\;mg/cm^3$, $29.4{\sim}32.5\;mg/g$, respectively. Also, the ratios of attached nitrifier to total bacteria on granular carriers were similar regardless of ammonia/nitrite-oxidizer (NSO; 3.2%, NIT; 2.8%) and very low compared to those(NSO; $22.8{\sim}28.4%$, NIT; $17{\sim}26%$) of suspended nitrifier.

The Removal of Organics and Nitrogen with Step Feed Ratio Change into the Anoxic and Anaerobic reactor in Advanced Sewage Treatment process Using Nonsurface-modified and Surface-modified Media Biofilm (비개질/개질 생물막을 이용한 오수고도처리공정에서 혐기조와 무산소조의 원수 분배율에 따른 유기물 및 질소 제거)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2005
  • This study was accomplished using attached $A^2/O$ process that contains nonsurface-modified and surface-modified polyethylene media inside the Anaerobic/Anoxic, Oxic tank, respectively. We could make the hydrophobic polyethylene media have hydrophilic characteristics by radiating ion beam on the surface of the media. The objectives of this study is to investigate the removal efficiencies of the organics and nitrogen when the step feed ratio of raw wastewater into anaerobic and anoxic tank is changed. In this case, we assumed that the denitrification rate can be improved because the nitrifiers in anoxic tank can perform denitrification using RBDCOD instead of artificial carbon sources (for example, methanol, etc.). The wastewater injection rate into anaerobic/anoxic tank was set up by the ratio of 10 : 0, 9 : 1, 8 : 2, 6 : 4, and the results of BOD removal efficiency showed similar trends with $93.3\%,\;92.6\%,\;92.4\%\;and\;91.6\%$, respectively. But the BOD removal efficiency (utilization of the organics) in the anoxic tank was in the order of 9 : 1 $(84.8\%)$, 10 : 0 $(77.0\%)$, 8 : 2 $(75.3\%)$, and 6 : 4 $(61.1\%)$. The T-N removal efficiency was most high when the ratio is 9 : 1 $(67.4\%)$, and other conditions, 10 : 0, 8 : 2, 6 : 4, showed $61.3(\%),\;60.7\%,\;55.5\%$, respectively; the ratio 6 : 4 was found to be lowest T-N removal efficiency, lower than the ratio 9 : 1 by $12\%$. Though the nitrification rate of the ratio 10 : 0, 9 : 1, and 8 : 2 showed similar levels, the ratio 6 : 4 showed considerable inhibition of nitrification, ammonia was the great portion of the effluent T-N. The advantages of this process is that this process is cost-saving, and non-toxic methods than injecting the artificial carbon source.

Estimation of Terminal Sire Effect on Swine Growth and Meat Quality Traits (돼지 성장 및 육질 형질에 영향하는 종료웅돈의 효과)

  • Kim, H.S.;Kim, B.W.;Kim, H.Y.;Iim, H.T.;Yang, H.S.;Lee, J.I.;Joo, Y.K.;Do, C.H.;Joo, S.T.;Jeon, J.T.;Lee, J.G.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • A submerged biofilm sequencing batch reactor (SBSBR) process, which liquor was internally circulated through sandfilter, was designed, and performances in swine wastewater treatment was evaluated under a condition of no external carbon source addition. Denitrification of NOx-N with loading rate in vertical and slope type of sandfilter was 19% and 3.8%, respectively, showing approximately 5 times difference, and so vertical type sandfilter was chosen for the combination with SBSBR. When the process was operated under 15 days HRT, 105L/hr.m3 of internal circulation rate and 54g/m3.d of NH4-N loading rate, treatment efficiencies of STOC, NH4-N and TN (as NH4-N plus NOx-N) was 75%, 97% and 85%, respectively. By conducting internal circulation through sandfilter, removal performances of TN were enhanced by 14%, and the elevation of nitrogen removal was mainly attributed to occurrence of denitrification in sandfilter. Also, approximately 57% of phosphorus was removed with the conduction of internal circulation through sandfilter, meanwhile phosphorus concentration in final effluent rather increased when the internal circulation was not performed. Therefore, It was quite sure that the continuous internal circulation of liquor through sandfilter could contribute to enhancement of biological nutrient removal. Under 60g/m3.d of NH4-N loading rate, the NH4-N level in final effluent was relatively low and constant(below 20mg/L) and over 80% of nitrogen removal was maintained in spite of loading rate increase up to 100g/m3.d. However, the treatment efficiency of nitrogen was deteriorated with further increase of loading rate. Based on this result, an optimum loading rate of nitrogen for the process would be 100g/m3.d.