• Title/Summary/Keyword: Bioelectric Effect

Search Result 12, Processing Time 0.017 seconds

THE EFFECT OF EXOGENOUS ELECTRIC CURRENTS ON CYCLIC NUCLEOTIDES IN FELINE ALVEOLAR BONE (외인성전류가 고양이 치조골의 cyclic nucleotides에 미치는 영향에 관한 연구)

  • Kim, Young-Bok;Lee, Jong-Heun;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.14 no.2
    • /
    • pp.187-202
    • /
    • 1984
  • There are evidences that exogenous electric currents are capable of enhancing bone formation and resolution, and that the conversion of the bioelectric response to biochemical activity provides the directional component of orthodontic tooth movement. In addition, evidence has implicated cyclic nucleotides in alveolar bone cellular activation mechanism during orthodontic tooth movement. In view of these evidences, this study was performed to investigate the effects of exogenous electric currents on cyclic nuclotide levels in feline alveolar bone and the possible clinical application of electric currents as an additional orthodontic tool. In the first study, three groups of three adult cats were subjected to application of a constant direct current of $10{\pm}2$ microamperes to gingival tissue near maxillary canine noninvasively for 1, 3, and 7 days respectively. In the second study, three groups of three adult cats each were treated by an electric-orthodontic procedure for 1, 3, and 7 days respectively. The left maxillary (control) canine received an orthodontic force of 80gm alone at time of initiation, while the right maxillary (experimental) canine received combined force-electric stimulation (80gm of force and $10{\pm}2$ microamperes of a constant D.C. currents). Alveola, bone samples were obtain from the mesial (tension and/or cathode) and the distal (compression and/or anode) sites surrounding maxillary canines as well as from contralateral control sites. The samples were extracted, boiled, homogenized, and the supernatants were assayed for cyclic nucleotides (cAMP, cGMP) by a radioimmunoassay method. And also the amount of tooth movement was measured in the second study. On the basis of this study, the following conclusions can be drawn: 1. The fluctuation pattern of cyclic nucleotide levels in alveolar bone treated by exogenous electric currents was similar to that treated by orthodontic force. 2. The cAMP levels in alveolar bone of electrically treated teeth significantly elevated above the control values. And of electrically treated teeth, the values of the anode sites were higher than those of the cathode sites. 9. The cGMP levels in alveolar bone of electrically treated teeth elevated above the control values at the initiation phase of treatment, but dropped below the control values at time of termination. And of electrically treated teeth, the values of the cathode sites were higher than those of the anode sites. 4. The rate of tooth movement in teeth . treated by force-electric combination increased with the length of treatment as compared to that treated by mechanical force alone.

  • PDF

Pyriproxyfen Inhibits Hemocytic Phagocytosis of the Beet Armyworm, Spodoptera exigua (파밤나방(Spodoptera exigua)의 혈구세포 식균반응에 대한 피리프록시펜의 억제효과 Nalini Madanagopal)

  • Madanagopal, Nalini;Lee, Yong-Joon;Kim, Yong-Gyun
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.164-170
    • /
    • 2007
  • The concept of innate immunity in insects which refers to the first line of host defense constitutes the humoral and cellular components which are involved in recognition and actively participate in the elimination of the intruding foreign micro- or macro-organisms. Several recent studies suggest that juvenile hormone (JH) modulates the cellular immune reactions in response to pathogen. In this study, pyriproxyfen (a JH agonist as an insect growth regulator) was tested in its any inhibitory effect on the immune reactions of the beet armyworm, Spodoptera exigua. To this end, five different hemocyte morphotypes of final instar S. exigua were identified by phase contrast microscopy. Plasmatocytes and granular cells, which constitute about 90% of the total hemocyte count, were prominently distinguished based on their basophilic/acidophilic nature using Giemsa stain. The role of pyriproxyfen on the functional ability of hemocytes was analyzed using FITC-labeled Providencia vermicola for the phagocytic potential of the hemocytes. Both granular cells and plasmatocytes exhibited phagocytosis behavior. Pyriproxyfen significantly inhibited the phagocytosis of both cell types, proposing its novel action as an immunosuppressant.