• 제목/요약/키워드: Biodiesel yield

검색결과 74건 처리시간 0.028초

Biodiesel Refining and Glycerin Recovering Process of Transesterification from Tra Catfish Fat

  • Huong, Le Thi Thanh;Tan, Phan Minh;Hoa, Tran Thi Viet;Lee, Soo
    • 한국응용과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 2009
  • Nowadays, Tra catfish fat is given attention as an appropriate material for biodiesel production in Vietnam. The aim of this work is to investigate the optimal conditions of refining biodiesel and recovering glycerin by the transesterification from Tra catfish fat using KOH catalyst. As our results, the yield of transesterification was achieved to 94.17% at $50^{\circ}C$ for 45 min with 6:1 molar ratio of methanol to fat in the presence of 0.8% KOH catalyst, and wherein the biodiesel was refined by washing with distilled water at $70^{\circ}C$ and dried in a microwave oven. The yield of raw glycerin recoveries from the transesterification process was 78.58%. The purity of raw glycerin was 84.14% by the conditions of neutralization state with $H_{3}PO_{4}$ solution (pH = 5), $70^{\circ}C$, and 60 min. Activated carbon (3.0 wt.%) was used for the bleaching process at $80^{\circ}C$ for 20 min. The biodiesel was obtained in accordance with for ASTM D 6751 (biodiesel standard). The ash and water of raw glycerins were 7.32 and 8.01%, respectively, and implied that the raw glycerin is very promising candidate to be used as a raw material for textile and cosmetic industries.

파일럿 규모의 바이오디젤 생산공정의 실증연구 (Performance of Pilot-Scale Biodiesel Production System)

  • 정귀택;박재희;박석환;박돈희
    • KSBB Journal
    • /
    • 제24권1호
    • /
    • pp.89-95
    • /
    • 2009
  • Biodiesel (fatty acid alkyl esters), which is produced from sustainable resources such as vegetable oil, animal fat and waste oils, have used to as substitutes for petro-diesel. In this study, we investigate the performance of 30 L and 300 L pilot-scale biodiesel production system using alkali-catalyst transesterification from soybean oil and rapeseed oil produced at Jeju island in Korea. The 30 L-scale biodiesel production was performed to in the condition of reaction temperature $65^{\circ}C$, catalyst amount 1% (w/w) and oil to methanol molar ratio 1 : 8. At that reaction condition, the fatty acid methyl ester contents of product are above 98% within reaction time 30 min. Also, the conversion yield of over 98% was obtained in 300 L-scale biodiesel production system using rapeseed oil and soybean oil. The quality of biodiesel produced from reaction system was satisfied to recommended quality standard of Korea. Our results may provide useful information with regard to the scale-up of more economic and efficient biodiesel production process.

동물성 유지를 이용한 Biodiesel 생산기술에 관한 연구 (A Study on the Biodiesel Production Technology using Lard Oil)

  • 신수범;민병욱;양승훈;박민석;김해성;백두현
    • 한국응용과학기술학회지
    • /
    • 제23권1호
    • /
    • pp.19-25
    • /
    • 2006
  • Flesh wasters from tannery create major environmental problems. Despite their considerable fat content, these waster do not find important usage. Their disposal is also troublesome and costly. We have investigated the possible use of this fat as the production of biodiesel(fatty acid methyl esters) by transesterification using with fossil fuels. The fat released the waste by boiling water under the optimal condition (i.e., temperature, $120^{\circ}C;$ decompression, 200mbar) and used to dry without refining for the production of fatty acid methyl esters. Under the optimal condition, the experimental value of biodiesel yield was about 96%. The result of the chemical and GC analysis showed fatty acid composition and characteristics of biodiesel. Evaluation of the product indicated that it was suitable for use as a biodiesel fuel. In result of this experiment oil extract from fleshing process can be transformed into an environmentally affination fuel, to provide economical and ecological profits.

Fuel properties of biodiesel produced from beef-tallow and corn oil blends based on the variation in the fatty acid methyl ester composition

  • Woo, Duk Gam;Kim, Tae Han
    • 농업과학연구
    • /
    • 제46권4호
    • /
    • pp.941-953
    • /
    • 2019
  • Biodiesels are being explored as a clean energy alternative to regular diesel, which causes pollution. In this study, the optimum conditions for producing biodiesel (BD) by combining beef tallow, an animal waste resource with a high saturated fatty acid content, and corn oil, a vegetable oil with a high unsaturated fatty acid content, were investigated, and the fuel properties were analyzed. Furthermore, Multivariate Analysis of Variance (MANOVA) was used to verify the optimum conditions for producing biodiesel. The influences of control factors, such as the oil blend ratio and methanol to oil molar ratio, on the fatty acid methyl ester and biodiesel production yield were investigated. As a result, the optimum condition for producing blended biodiesel was verified to be tallow to corn oil blend ratio of 7 : 3 (TACO7) and a methanol to oil molar ratio of 14 : 1. Moreover, the interaction between the oil blend ratio and the methanol to oil molar ratio has the most crucial effects on the production of oil blended biodiesel. In conclusion, the analysis results of the fuel properties of TACO7 BD satisfied the BD quality standard, and thus, the viability of BD blended with waste tallow as fuel was verified.

Transesterification Using the Cross-Linked Enzyme Aggregate of Photobacterium lipolyticum Lipase M37

  • Han, Jin-Yee;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권11호
    • /
    • pp.1159-1165
    • /
    • 2011
  • Biodiesel is methyl and ethyl esters of long-chain fatty acids produced from vegetable oils or animal fats. Lipase enzymes have occasionally been used for the production of this biofuel. Recently, biodiesel production using immobilized lipase has received increased attention. Through enhanced stability and reusability, immobilized lipase can contribute to the reduction of the costs inherent to biodiesel production. In this study, methanol-tolerant lipase M37 from Photobacterium lipolyticum was immobilized using the cross-linked enzyme aggregate (CLEA) method. Lipase M37 has a high lysine content (9.7%) in its protein sequence. Most lysine residues are located evenly over the surface of the protein, except for the lid structure region, which makes the CLEA preparation yield quite high (~93%). CLEA M37 evidences an optimal temperature of $30^{\circ}C$, and an optimal pH of 9-10. It was stable up to $50^{\circ}C$ and in a pH range of 4.0-11.0. Both soluble M37 and CLEA M37 were stable in the presence of high concentrations of methanol, ethanol, 1-propanol, and n-butanol. That is, their activities were maintained at solvent concentrations above 10% (v/v). CLEA M37 could produce biodiesel from olive oil and alcohols such as methanol and ethanol. Additionally, CLEA M37 generated biodiesel via both 2-step methanol feeding procedures. Considering its physical stability and reusability, CLEA M37 may potentially be used as a catalyst in organic synthesis, including the biodiesel production reaction.

바이오디젤 윤활성 향상 메커니즘 (Mechanism of Lubricity Improvement by Biodiesels)

  • 임영관;이재민;김종렬;하종한
    • Tribology and Lubricants
    • /
    • 제32권3호
    • /
    • pp.95-100
    • /
    • 2016
  • As an alternative fuel, biodiesel has excellent lubricating property. Previously, our research group reported that the properties of biodiesels depended on their composed molecular structure. In this study, we investigate lubricity and the mechanism of lubricity improvement of synthesized biodiesel molecules. We synthesize four types of biodiesel components from fatty acid via fisher esterification and soybean biodiesel from soybean oil via transesterification in high yield (92-96%). We analyze the lubricity of the five 5 types of biodiesel using HFRR (high frequency reciprocating rig). We estimate that the mechanism of lubricity is relevant to the molecular structure and structure conversion of biodiesel. The test results indicate that the longer the length of molecules and the higher the content of olefin, the better the lubricity of the biodiesel molecules. However, the wear scar size of the first test samples’ do not show a regular pattern with the wear scar size of the second test samples’. Moreover, we investigated the structure conversion of the biodiesels by using GC-MS for the recovered biodiesel samples from the HFRR test. However, we do not detect structure conversion. Thus, we conclude that the lubricity of biodiesel depends on how effectively solid adsorption and boundary lubrication occurs based on the size of the molecule and the content of olefin in the molecule. In addition, HFRR test condition in not sufficient for Diels-Alder cyclization of biodiesel components.

Optimization of Transesterification Process of Biodiesel from Nyamplung (Calophyllum inophyllum Linn) using Microwave with CaO Catalyst

  • Kusuma, Heri Septya;Ansori, Ansori;Wibowo, Sasmitha;Bhuana, Donny Satria;Mahfud, Mahfud
    • Korean Chemical Engineering Research
    • /
    • 제56권4호
    • /
    • pp.435-440
    • /
    • 2018
  • Nyamplung (Calophyllum inophyllum Linn) is one of the most widely grown plants in Indonesia. In addition, nyamplung oil has a future competitive advantage in that it can be processed into biodiesel. However, conventional methods for transesterification of nyamplung oil have been less effective. Therefore, in this study biodiesel was produced using microwaves as one of the alternative methods that can improve the shortcomings of conventional methods. In addition, optimization of parameters such as microwave power, catalyst concentration and transesterification time was done using Box-Behnken design. The combination of microwave with CaO catalyst and treated with Box-Behnken design are considered as a new and modern method for production of biodiesel from nyamplung oil and optimizing the factors that affected the transesterification process. The results showed that factors such as microwave power of 449.29 W, concentration of catalyst of 4.86% and transesterification time of 10.07 min can produce optimal yield of biodiesel of 92.73% with reliability of 93.22%.

Response Surface Method를 이용한 폐식용유로부터 바이오디젤 생산의 최적화 (Optimization of Biodiesel Production from Waste Frying Oil using Response Surface Method)

  • 이세진;김의용
    • KSBB Journal
    • /
    • 제17권4호
    • /
    • pp.396-402
    • /
    • 2002
  • 바이오디젤(지방산 메틸 에스테르)은 생분해성, 무독성, 그리고 재생연료로서 지난 10여년간 많은 관심을 끌고 있다. 바이오디젤을 생산하기 위해 다양한 방법들이 개발되었는데, 그 중 알칼리 촉매를 이용한 에스테르화 반응이 짧은 시간동안 높은 수율을 얻을 수 있다. 따라서 본 연구에서는 알칼리 촉매하에 에스테르화 반응의 최적조건을 찾기 위하여 response surface method를 사용하였다. 결과적으로 바이오디젤 생산 공정에 영향을 주는 7개의 변수 중 반응온도, 반응시간, 그리고 교반속도가 중요했는데 이들의 최적 값은 각각 67$^{\circ}C$, 68분, 94 rpm이었다. 이와같은 최적인 조건하에서 실험한 결과 바이오디젤로의 전화율은 99.7%이었다.

Transesterification of Vegetable Oils in Pulsed-Corona Plasma Discharge Process

  • Hyun, Young-Jin;Mok, Young-Sun;Jang, Doo-Il
    • 한국응용과학기술학회지
    • /
    • 제29권1호
    • /
    • pp.81-87
    • /
    • 2012
  • The biodiesel production characteristics in a pulsed-corona plasma reactor has been investigated through parametric tests. Transesterification of rapeseed oil together with camelina oil was done with the change of such variables as voltage of power, molar ratio, KOH catalyst and temperature. The energetic electrons emitted from pulsed-corona plasma has contributed to the enhancement of yield on rapeseed oil in short time (15 min). The higher yield on camelina oil was observed in 5 min. The optimal parameters were shown as the voltage of 23 kV, the molar ratio of 5/1, the content of KOH catalyst of 0.6 wt% and the temperature of $28^{\circ}C$ under the rotating rate of spark gap of 900 rpm.

Process optimization for biodiesel production from indigenous non-edible Prunus armeniaca oil

  • Singh, Deepak;Kumar, Veerendra;Sandhu, S.S.;Sarma, A.K.
    • Advances in Energy Research
    • /
    • 제4권3호
    • /
    • pp.189-202
    • /
    • 2016
  • This work emphasized optimum production of biodiesel using non-edible Prunus armeniaca (Bitter Apricot) oil via transesterification collected from the high altitude areas of Himachal Pradesh, India. In this study the author produced biodiesel through the process of transesterification by using an alkali catalyst with alcohol (methanol and ethanol), under the varying molar ratio (1:6, 1:9, 1:12), variable catalyst percentage (1% and 2%) and temperature ($70^{\circ}C$, $75^{\circ}C$, $80^{\circ}C$, $85^{\circ}C$). Furthermore, a few strong base catalysts were used that includes sodium hydroxide, potassium hydroxide, sodium metal and freshly prepared sodium methoxide. After screening the catalyst, response surface methodology (RSM) in connection with the central composite design (CCD) was used to statistically evaluate and optimize the biodiesel production operation using NaOH as catalyst. It was found that the production of biodiesel achieved an optimum level biodiesel yield with 97.30% FAME conversion under the following reaction conditions: 1) Methanol/oil molar ratio: 1:6, 2) Reaction time: 3h, 3) Catalyst amount: NaOH 2 wt. %, and 4) Reaction temperature: $85^{\circ}C$. The experimental results showed that the optimum production and conversion of biodiesel through the process of transesterification could be achieved under an optimal set of reaction conditions. The biodiesel obtained showed appropriate fuel properties as specified in ASTM, BIS and En- standards.