• Title/Summary/Keyword: Biodegradation capacity

Search Result 63, Processing Time 0.018 seconds

Biodegradability of Artificial Bait for Blue Crab Pots and Its Effect on Seawater Quality (꽃게 통발용 인공미끼의 생분해도 및 해양수질 영향)

  • Jeong, Byung-Gon;Koo, Jae-Geun;Chang, Ho-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.96-103
    • /
    • 2009
  • The biodegradability in water of the artificial baits for blue crab pots which were made of intestines of mackerel, tuna and grinded krill were studied. The biodegradability of artificial bait was evaluated with the effective capacity of 10L water tank which was made of acryl pipe at the velocity of 1m/d and hydraulic retention time of 12 hours. For the 23 days operation time, all artificial baits were degraded fast at the early stage of operation time and stabilized within 5 days after start up. The rates of biodegradation were different depending on the raw materials of artificial baits. In terms of degradation rate of organic matter which can be expressed as COD, artificial bait made of tunas intestine showed the fastest degradation rate. On the other hand, in terms of degradation rate of nitrogenous matter which can be expressed as ammonia nitrogen, artificial bait made of mackerels intestine showed the fastest degradation rate. In order to evaluate the effect of artificial bait on marine ecosystem, seawater qualities including SS, COD, DO, nitrogen, phosphorus were determined depending on depth and location during 2 days test operation period. It is apparent that the effect of artificial bait on seawater quality was negligible when comparing seawater quality of test operation area with control area.

  • PDF

Biodegradation of Gasoline Oxygenate MTBE(Methyl tert-Butyl Ether) by Butane-Utilizing Bacteria (부탄분해미생물에 의한 가솔린첨가제 MTBE(Methyl tert-Butyl Ether) 분해)

  • 장순웅;백승식;이시진
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.31-41
    • /
    • 2001
  • In this study, we have examined the potential degradation of MTBE(methyl tert-butyl ether) by pure culture ENV425 and mixed culture obtained from gasoline contaminated soil using n-butane as the sources of carbon and energy. The results described in this study suggest that MTBE is degraded cometabolically by ENV425 and mixed culture grown on n-butane. Butane and MTBE degradation was completely inhibited by acetylene, which indicated that both substrates were degraded by butane monooxygenase. These cultures grown on n-butane generated TBA (tert-butyl alcohol) as a metabolite of MTBE oxidation. TBA Production was accounted 54.7% and 58.6% for MTBE oxidation by ENV425 and mixed culture, respectively. In resting cell experiments, however, TBA and TBF were detected as the oxidation products of MTBE by ENV425 and mixed culture. The observed maximal MTBE degradation rates were 52.3 and 62.3 (nmol MTBE degraded/hr/mg TSS) by ENV425 and mixed culture, respectively, and the observed maximal transformation yields ($T_y$) were 44.7 and 34.0 (nmol MTBE degraded/$\mu$mol n-butane utilized), and the observed maximal transformation capacities ($T_c$) were 199 and 226 ($\mu$mol MTBE degraded/mg TSS used).

  • PDF

Removal of 1,4-dioxane in Ozone and Activated Carbon Process (오존과 활성탄 공정해서의 1,4-Dioxane 제거 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Bae, Sang-Dae;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1280-1286
    • /
    • 2006
  • Three different virgin activated carbons made of each coal(Calgon), coconut(Samchully) and wood(Picabiol) based activated carbon(AC) were tested for an adsorption performance of 1,4-dioxane in a continuous adsorption column. Breakthrough behavior was Investigated that the breakthrough points of coal, coconut and wood based AC were observed as 3600 bed volumn(BV), 1440 BV and 144 BV respectively. Adsorption capacity(X/M) of coal, coconut and wood based AC was observed. The reported results of adsorption capacity showed that coal based AC was highest(578.9 ${\mu}g/g$), coconut based AC was intermediate(142.3 ${\mu}g/g$) and wood based AC was lowest(7.4 ${\mu}g/g$) due to increasing specific surface area. Moreover, carbon usage rates(CURs) for coal, coconut and wood based AC had been shown as 0.48 g/day, 1.41 g/day and 6.9 g/day respectively. The constant characteristic of the system, k of coal based AC was found to be 91.5 and k of coconut based AC was found to be 17.9. Removal efficiencies of 1,4-dioxane with different ozonation dosages(2 and 5 mg/L) for 20 min ozonation had been shown 38% and 87% respectively. There was no observation for biological removal of 1.4-dioxane by attached micro-organisms when used(3.1 years and over 5 years) biological activated carbon(BAC) without pretreatment of oxidation were employed. When a combination of ozonation(2 mg/L and 5 mg/L) and BAC process for $10{\sim}30$ min was applied, removal efficiency for 1,4-dioxine increased only $2{\sim}6%$ compared to only applying ozonation. Therefore removal efficiency of BAC process prior to using oxidation was proven to negligible. Consequently, the results presented in this paper provide a better insight into the adsorption performance of 1,4-dioxane. This observation suggests that using virgin activated carbon made of coal is the best selection for removal of 1,4-dioxane in the water treatment for an advanced treatment. It is clear from this research that longer EBCT for ozonation or higher ozone concentration are more effective operation methods for removal of 1,4-dioxane than longer EBCT in the BAC process.