• 제목/요약/키워드: Biodegradation capacity

검색결과 63건 처리시간 0.024초

Biodegradation Capacity Utilization as a New Index for Evaluating Biodegradation Rate of Methane

  • Kim, Tae Gwan;Yi, Taewoo;Yun, Jeonghee;Ryu, Hee Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.715-718
    • /
    • 2013
  • Density of catalytic organisms can determine the biodegradation capacity and specific biodegradation rate (SBR). A new index, biodegradation capacity utilization (BCU, %), was developed for estimating the extent of actual biodegradation of a gas compound over the full capacity. Three methanotrophic cultures were serially diluted (1-1/25), and methane SBR and BCU were measured. Consistently, biomass reduction increased the SBR and decreased the BCU. Linearity (p < 0.05, r > 0.97) between the BCU and cell density indicated the reflection of biodegradation capacity by BCU. Therefore, BCU is indicative of whether the density of catalytic organisms is pertinent for SBR evaluation of low-soluble gaseous compounds.

Effects of Various Parameters on Biodegradation of Degradable Polymers in Soil

  • Shin, Pyong-Kyun;Jung, Eun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권6호
    • /
    • pp.784-788
    • /
    • 1999
  • The effects of pH, moisture content, and the relative amount of a polymer sample on the biodegradation of degradable polymers in soil were studied using various polymer materials such as cellulose, poly-(butylene succinate-co-adipate) (SG) polycaprolactone (PCL), a blend of PCL and starch (PCL-starch), and a poly-lactic acid (PLA). As with other materials, the polymers degraded faster at a neutral pH than at either acidic or basic conditions. Moisture contents of 60 and 100% water holding capacity exhibited a similar biodegradability for various polymers, although the effects differed depending on the polymer. For synthetic polymers, biodegradation was faster at 60%, while the natural polymer (cellulose) degraded faster at 100%. Fungal hypae was observed at a 60% water holding capacity which may have affected the biodegradation of the polymers. A polymer amount of 0.25% to soil revealed the highest biodegradability among the ratios of 0.25, 0.5, and 1%. With a higher sample amount, the residual polymer could be recovered after the biodegradation test. It was confirmed that a test for general biodegradation condition can be applied to plastic biodegradation in soil.

  • PDF

생물활성탄의 여재선정을 위한 유기물의 흡착 및 생물분해 특성에 관한 연구 (A Study on the Characteristics of Adsorption and Biodegradation of Organic Matter for the Media Selection in Biological Activated Carbon)

  • 우달식
    • 환경위생공학
    • /
    • 제13권2호
    • /
    • pp.156-164
    • /
    • 1998
  • This study was performed to select media for the development of biological activated carbon process. Using activated carbon made by Norit, Calgon, Samchully Co., removal efficiency of humic acid by the isothermal adsorption test and biodegradation of organic matters by microbes attached to BAC and observation and counting of microbes attached to BAC were examined. The removal efficiency of humic acid with dose of activated carbon was influenced by initial concentration. Compared with other activated carbon, Norit was found to be most effective in view of adsorption capacity, biodegradation of organic matter, and attachment characteristics of microorganism. In conclusion, Norit which has high adsorption capacity and good biodegradation of organic matter was recommended for selecting media in BAC process.

  • PDF

Biodegradation of Hydrocarbon Contamination by Immobilized Bacterial Cells

  • Rahman Raja Noor Zaliha Abd.;Ghazali Farinazleen Mohamad;Salleh Abu Bakar;Basri Mahiran
    • Journal of Microbiology
    • /
    • 제44권3호
    • /
    • pp.354-359
    • /
    • 2006
  • This study examined the capacity of immobilized bacteria to degrade petroleum hydrocarbons. A mixture of hydrocarbon-degrading bacterial strains was immobilized in alginate and incubated in crude oil-contaminated artificial seawater (ASW). Analysis of hydrocarbon residues following a 30-day incubation period demonstrated that the biodegradation capacity of the microorganisms was not compromised by the immobilization. Removal of n-alkanes was similar in immobilized cells and control cells. To test reusability, the immobilized bacteria were incubated for sequential increments of 30 days. No decline in biodegradation capacity of the immobilized consortium of bacterial cells was noted over its repeated use. We conclude that immobilized hydrocarbon-degrading bacteria represent a promising application in the bioremediation of hydrocarbon-contaminated areas.

토양 슬러리내에 수착된 phenanthrene의 생물학적 이용성 (Bioavailability of sorbed phenanthrene in soil slurries)

  • 신원식;김영규;김영훈;송동익
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.92-95
    • /
    • 2002
  • Bioavailability study was conducted to elucidate the relationship between sorption/desorption and biodegradation of sorbed phenanthrene in seven different soils. Mineralization kinetics was determined for phenanthrene-sorbed soil slurries inoculated with Pseudomonas putida (ATCC strain 17484). Two biodegradation models were used to fit mineralization kinetics; (i) a first-order degradation model and (ii) a coupled degradation-desorption model. The biodegradation rates were in order of vermicompost >Bion peat > 50% organoclay > Pahokee > blank (no soil, medium only) > montmorillonite > Ohio shale. The mineralization rate constants increased as desorption-resistance of phenanthrene increased. Among the tested sorbents, active biodegradation of phenanthrene was observed in vermicompost and Bion peat. Biodegradation in these two sorbents exhibited little lag time and a high maximum mineralized capacity. The role of sorption/desorption in bioavailability of phenanthrene sorbed in soils was discussed.

  • PDF

국내 유류오염 군부지 내 자연저감기법 적용 사례 연구 (A Case Study of Monitored Natural Attenuation at a Military Site Contaminated by Petroleum Hydrocarbon in Korea)

  • 이환;강선홍
    • 환경영향평가
    • /
    • 제25권5호
    • /
    • pp.333-344
    • /
    • 2016
  • 본 연구에서는 유류오염 지역인 유류보급 군부대 일대의 지하수에 대한 수질 측정 및 분석, 추적자시험, 지하수유형분석 등 수리지질학적 특성을 통하여 오염부지에서 나타나는 자연저감의 효과를 파악하였다. 또한 이 결과를 반영하여 최종적으로 거리별 자연 저감율 및 발현된 생분해능 등을 평가하였다. 거리에 따른 자연저감율을 평가한 결과, 선형기울기($K/V_x$)는 -0.0248로 계산되었으며 산정된 체적저감율은 $1.7{\times}10^{-3}/day$로 나타났다. 연구지역의 발현된 BTEX 총 생분해능은 9.1~10.0 mg/L의 범위(평균 9.7 mg/L)에 있으며 탈질화 과정이 약 63.6%로 가장 큰 영향을 주는 redox 과정임을 확인하였다. 본 유류오염지역의 지하수 BTEX 오염농도 평균 1.326 mg/L임을 고려할 때 생분해능은 충분할 것으로 판단된다.

토양.하수 슬러지.음식물 쓰레기 퇴비내에서의 휘발성 유기화합물(VOCs)의 기체상 생분해에 관한 연구 (Investigation on the biodegradation of VOCs in soil, sewage sludge, and food waste compost)

  • 김혜진;이은영;박재우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 창립총회 및 춘계학술발표회
    • /
    • pp.11-14
    • /
    • 2000
  • Wastewater sludge and composted food wastes were examined as the alternatives of a landfill cover for soils to eliminate the emission of VOCs. The benefit of these alternatives is in their high sorption capacity, which is 5 to 50 times higher than natural soils. After sorption is finished, biodegradation is an important mechanism in decrease of VOCs concentration. In order to investigate appropriate VOCs degradation condition, biodegradation batch experiment is being conducted with isolated strain X9-c. Both benzene and TCE were degraded only in soil with 12%(water volume/sorbent volumn) water condition. When the water condition varied from 12 to 48% in compost, optimum water conditions of composted food waste was 36%.

  • PDF

유류분해 미생물의 특성 및 제제화 가능성 평가

  • 윤정기;김태승;노회정;김혁;박종겸;고성환
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.297-300
    • /
    • 2004
  • The various microbial tests were performed to determine bioremediation agent capacity for eight strains isolated from the oil contaminated regions. Two tests for isolated strains were conducted such as cell hydrophobicity and emulsifying activity. The biodegradation of SHM (saturated hydrocarbon mixture) and AHM (aromatic hydrocarbon mixture) with the strains also was carried out. The strains having higher cell hydrophobicity and emulsifying activity degraded petroleum oil effectively. The degradation capacity for SHM was represented more than 90% in YS-7 and WLH-1 of isolated strains, and KH3-2 were capable of degrading AHM. Especially, WLH-1 as yeast was shown more than two or three times in the degradation capacity of automobile engine lubricants and the biomonitoring results of contaminated soil for residual oil degrading test showed that the hydrocarbon biodegradation was increased in the second treatment by this strain.

  • PDF

흡착특성이 다른 내분비계 장애물질 3종, Amitrol, Nonylphenol, Bisphenol-A의 GACs에서의 흡착 특성 (Adsorption characteristics of Amitrol, Nonylphenol, Bisphenol-A with GACs)

  • 최근주;김상구;권기원;지용대;김승현;김창원
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.256-264
    • /
    • 2004
  • Adsorption characteristics of three endocrine disruptors, amitrol, nonylphenol, and bisphenol-A, were evaluated depending on the type and service duration of activated carbon (AC). Bituminous coal-, wood-, and coconut-based coals were tested. Bituminous coal-based AC (BCAC) had the greatest sorption capacity for the three chemicals tested, followed by wood-based AC (WAC) for nonylphenol and coconut palm-based AC (CAC) for bisphenol-A. During the column test, amitrol removal efficiency increased over time, indicating that hydrophilic endocrine disruptors are biodegraded in the AC column. Removal efficiencies of hydrophobic compounds such as nonylphenol and bisphenol-A decreased over time since the main removal mechanism was adsorption. The order of the amitrol removal was: BCAC-5.9 yr, CAC-3.l yr > BCAC-2.2 yr > BCAC-virgin > CAC-virgin > WAC-virgin > WAC-3.l yr. In general, used AC had greater removals than virgin AC. The order of the bisphenol-A removal was: CAC-virgin > BCAC-2.2 yr > CAC-3.l yr > WAC-virgin > BCAC-5.9 yr > WAC-3.l yr. The order of the nonylphenol removal was: BCAC-virgin > WAC-virgin > CAC-3.1 yr, WAC-3.1yr> BCAC-2.2 yr > BCAC-5.9 yr > CAC-3.1 yr. Bituminous coal AC performed the best over time. Endocrine disruptors such as these three compounds appear to be removed effectively by activated carbon through biodegradation and adsorption. Wood and coal based among the virgin ACs and 3.1 years used wood base among the used ACs appeared the lowest carbon usage rate(CUR) for nonylphenol removal by prediction model. Virgin and used coconut base ACs except BCAC had the lowest CUR for removal Bisphenol-A. Biodegradation of nonylphenol and Bisphenol-A did not occurred during the 9,800 bed volume experiment period. BCAC had the highest biodegradation capacity of 46% for amitrol among virgin ACs and the used coal based ACs had 33-44% higher biodegradation capacity than virgin's for amitrol so biodegradation is the effective removal technology for hydrophilic material such as amitrol.

토양에 유출된 염소계 휘발성 유기물질의 자연저감 : 수분과 탄소원의 영향 (Natural Dissipation of Chlorinated Volatile Organic Compounds Released in Soil : Effect of Moisture Content and Carbon Source)

  • 조장환;최상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권3호
    • /
    • pp.46-51
    • /
    • 2005
  • 본 연구에서는 토양에 유출된 염소계 휘발성 유기물질의 자연저감에 대한 흡착과 미생물분해의 영향을 알아보았다. 대표적인 염소계 휘발성 유기물질인 TCA (1,1,1-trichloroethane), TCE (trichloroethylene) 및 PCE (tetrachloro ethylene)의 자연저감율을 비교하기 위해 세가지 조건에서 바이얼 실험을 수행하였다; (1) 멸균, (2) 비멸균 그리고 (3) 비멸균/탄소원첨가. 또한 각각의 조건에서 수분함량에 의한 영향을 알아보기 위해 세 가지로 적용하였다; (1) wilting point (12%, w/w), (2) field capacity (29%, w/w), (3) saturation (48%, w/w). 100일 경과 후, TCA 및 TCE는 field capacity에서 미생물에 의한 자연저감이 상대적으로 활발히 일어났다. 비멸균/탄소원 첨가 토양은 멸균한 토양에 비해 유기물질의 제거율에서 현격한 차이를 나타내었다. PCE는 미생물 및 탄소원 첨가에 의한 영향을 보이지 않았다.