• 제목/요약/키워드: Biodegradable plastic

검색결과 78건 처리시간 0.024초

비주 버팀목으로 흡수성 고정판을 이용한 비첨 성형술 (Tip Plasty using Biodegradable Plate as a Columella Strut)

  • 김수영;이수향;황은아;최현곤;김순흠;신동혁;엄기일
    • Archives of Plastic Surgery
    • /
    • 제37권3호
    • /
    • pp.259-264
    • /
    • 2010
  • Purpose: Most surgeons have used autogenous cartilage for columella strut graft. But the supply of autogenous cartilage is often limited. So, this study is to investigate the usefulness of biodegradable plate as columella strut material. Methods: We studied 19 patients who have secondary cleft nasal deformity. Patients were divided into two groups. Group A patients who were not closed their growth plate underwent columella strut graft only with biodegradable plate through endonasal approach. The biodegradable plate was inserted between nasal tip and anterior nasal spine. Group B patients were closed their growth plate. They had an operation for columella strut graft with biodegradable plate fixed with autogenous conchal cartilage. If nasal tip projection was insufficient, we performed additionally onlay graft on nasal tip with autogenous soft tissue or remnant cartilage. Results: As a result of mean 14 months follow-up, we achieved a good nasal tip projection, narrowing of interalar distance and symmetrical nostril shape. No specific complications were reported except 2 cases, which were the extrusion of biodegradable plate into the nasal cavity and Staphylococcus aureus infection. Conclusion: The columella strut graft using biodegradable plate is simple and effective method. Biodegradable plate can be a good substitute for columella strut in patients who can not use autogenous cartilages.

생분해성 플라스틱 연직배수재의 특성 (Characteristics of Biodegradable Plastic Drain Board)

  • 김주형;조삼덕;채종길;사토 히데유키
    • 한국지반신소재학회논문집
    • /
    • 제9권3호
    • /
    • pp.67-75
    • /
    • 2010
  • 본 연구에서는 생분해성 수지를 이용한 연직배수재에 대해 다양한 성능 평가방법을 적용하여 생분해성 플라스틱배수재의 공학적 특성을 분석하였다. 생분해성 플라스틱으로 제작한 연직배수재는 기존 합성수지 연직배수재에 비해 낮은 인장변형률을 가지며 상대적으로 낮은 인장강도를 갖지만, 연직배수재로서 가져야 할 최소한의 인장강도는 발휘하는 것으로 나타났다. 생분해성 플라스틱으로 제작한 필터는 투수성이 좋고 유효구멍크기가 작아 필터의 성능으로 매우 적합한 것으로 나타났다. 또한 생분해성플라스틱 배수재의 통수능은 필터의 강성을 개선하는 경우 국내 시방기준에도 만족할 수 있는 성능을 갖는 것으로 나타났다.

  • PDF

생체흡수성 재료를 이용한 하악골절 치료의 결과 (The Result of Mandible Fracture Fixations with Biodegradable Materials)

  • 왕재권;은석찬;허찬영;백롱민;민경원
    • 대한두개안면성형외과학회지
    • /
    • 제9권2호
    • /
    • pp.45-50
    • /
    • 2008
  • Purpose: Traditionally, titanium miniplate has been used for rigid fixation of mandible fractures. However, the limitations of metal plate have been reported such as hypersensitivity, interference with the cranio-facial growth of growing child, secondary bone resorption around the plate, foreign body reaction, declination of primary callus formation, and bone atrophy, and so forth. Recently, biodegradable miniplate has been introduced and used as an alternative to the metal plate despite of its lower strength. This study evaluated the usefulness and stability of biodegradable plate and screw for treatment of mandible fractures. Methods: In this study, 61 patients(92 areas) diagnosed as mandible fracture in the last 2 years have been reviewed. We used titanium plate and screw in 32 patients, and biodegradable plate and screw($INION^{(R)}$) in 29 patients. Stability of plates and screws, bony healing process and its side effects were observed by clinical and radiographic assessment. Results: In the titanium material group, one of malocclusion, two of mouth opening limitation, three of pain, three of palpation were shown. The plate of six patients involved in these complications were removed. In the biodegradable group, two of mouth opening limitation, two of pain, one of localized wound infection were shown and one plate was removed secondarily. Conclusion: There was no statistical difference between two groups in bony healing and complication rates. Biodegradable implants show efficient stability during initial bone healing and low side effects in long-term follow up periods.

혐기성소화에 의한 생분해성 플라스틱의 생분해능 검토 (Study of Biodegradable Ability of Biodegradable Plastic in Anaerobic Digestion)

  • 박정수;주흥수;류재영;배재근;전영승
    • 유기물자원화
    • /
    • 제10권1호
    • /
    • pp.109-119
    • /
    • 2002
  • 본 연구에서는 음식물쓰레기의 자원화방안으로 메탄발효를 고려하여 메탄발효과정에서 음식물쓰레기와 생분해성 음식물쓰레기 전용봉투가 투입되었을 때 실제적으로 생분해성 플라스틱이 분해가 잘 이루어지며 생분해성 플라스틱이 미생물의 활성이나 분해반응에 영향이 있는지를 연구하였다. 30%생분해성 플라스틱의 경우, 미생물에 의한 무게감량에서 중온은 최대6%, 고온은 최대 10%밖에 분해가 되지 않았다. 신장율은 중옹이 약 150%, 고온이 약 120%까지 감소하였으며, 인장강도에서는 중온이 약 $180kgf/cm^2$, 고온이 $200kgf/cm^2$ 정도 감소하였다. 대체로 온도가 높고 미생물의 활성이 좋은 고온 혐기성 소화에서 중온보다 많은 무게감소를 보였으며 HDPE계열보다는 LLDPE계열의 플라스틱이 무게감량과는 상관없이 신장율과 인장강도에서 많은 감소를 보였다. 100%생분해성 플라스틱의 경우 미생물에 의한 무게감량에서 중온은 최대 8%, 고온은 최대 33%정도 감소가 있었다. 신장율은 중온이 약 230%, 고온이 약440%까지 감소하였으며, 인장강도에서는 중온이 약 $380kgf/cm^2$, 고온이 $400kgf/cm^2$ 정도 감소하였다. 이러한 결과 30%생분해성 플라스틱은 음식물쓰레기전용봉투로의 사용이 부적합하며 100% 생분해성 플라스틱의 경우 음식물쓰레기 전용봉투로 사용이 가능하나 제품이 고가이기 때문에 경제적 부담을 줄일 수 있는 방법이 요구된다.

  • PDF

Fabrication and characterization of disposable golf tees using biodegradable polymer through 3D printing

  • Jihyuk Jung;Kwang Sun Huh;Jungho Jae;Kwang Se Lee
    • 청정기술
    • /
    • 제29권3호
    • /
    • pp.172-177
    • /
    • 2023
  • Many studies have been conducted on the indiscriminate use of plastic due to the environment problems it has caused all over the world. This problem can be mitigated by using eco-friendly/biodegradable plastics that can be decomposed by microorganisms or enzymes. This study focused on addressing the plastic golf tees that are thrown away at golf courses. In order to replace conventional golf tees (ABS) with a more eco-friendly alternative, this study explored a biodegradable plastic and 3D printing method for producing golf tees. Among the biodegradable plastics, PLA (polylactic acid) was found to be a good candidate as an eco-friendly material because it is biodegradable by microorganisms. Thus, golf tees were prepared by using PLA via 3D printing, and the physical and chemical properties of the tees were evaluated. The amorphous region of PLA was confirmed through XRD. Also, FT-IR showed the unique peak of PLA without impurities. It was confirmed through an optical microscope that the specific surface area and roughness had increased. This structure plays a role in firmly fixing the golf tee when it is inserted into the ground. In addition, it was possible to improve the compressive load compared to ABS golf tees while also decreasing the compressive stretching.

턱교정 수술에 있어 흡수성 고정판 및 나사 사용에 대한 임상적 연구 (CLINICAL STUDY ON USE OF BIODEGRADABLE PLATE AND SCREW IN ORTHOGNATHIC SURGERY)

  • 박성수;최진영
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제31권2호
    • /
    • pp.127-135
    • /
    • 2009
  • Objectives : The titanium fixation system has been used in orthognathic surgery for fixation of bone segments usually, but the biodegradable fixation system was developed and also being used. The strongest point in the biodegradable system is that no extra operation should be needed to remove fixation materials. In spite of this merit, oral & maxillofacial surgeons hesitate to use this system in fracture or orthognathic surgery. In this study, as we got some clinical experiences, we'd like to report the result of clinical study using the biodegradable fixation system in orthognathic surgery. Patients and Methods : A total of 35 patients composed of 17 males and 18 females with 25 osteotomies in maxilla and 34 osteotomies in mandible were fixated with the biodegradable fixation system(Inion $CPS^{(R)}$). We investigated methods of stabilization, fixation time, and complications on the basis of the method as above. Results : Four 2mm thick L shaped plates with 7 holes of which 1 hole was removed were fixed in maxilla with six $2.0{\times}7mm$ screws. Three $2.5{\times}16{\sim}18mm$ screws were used to fix superior ramus area and one mandibular angle area in mandible. It took about 27.4 minutes in maxilla, 25.3 minutes in mandible to perform the fixation which took longer time than the titanium system(9.5 minutes in maxilla, 8 minutes in mandible). Generally, there was no problem except 9 cases in which there were some complications. Conclusions : In most cases, the biodegradable fixation system can be used without problem in usual orthognathic surgery. But, this system is inferior to the titanium fixation one in some respects such as fixation time, size, and physical property. Some supplementations for such weak points as aforementioned should be needed for the universal use of biodegradable materials.

생분해 자망 폐어구 재활용을 위한 전처리 및 재생칩 제조 장치 개발 (Development of a pre-treatment and recycled chip manufacturing device for recycling biodegradable gillnet waste fishing gear)

  • 배재현;원성재;박수봉
    • 수산해양기술연구
    • /
    • 제60권3호
    • /
    • pp.269-276
    • /
    • 2024
  • In response to the global interest and efforts towards reducing plastic use and promoting resource recycling, there is a growing need to establish methods for recycling discarded fishing gear. In Korea, various technologies are being developed to recycle discarded fishing gear, but significant technical and policy challenges still remain. In particular, biodegradable gill nets require a pre-treatment process to separate biodegradable materials from other substances and to remove salt before recycling. Therefore, this study aims to develop a pre-treatment device for recycling biodegradable gill nets and to evaluate the feasibility of recycling them.

생분해성 플라스틱 식생매트의 특성 (Characteristics of Biodegradable Plastic Vegetation Mats)

  • 박진오;김하석;이세현
    • 한국건설순환자원학회논문집
    • /
    • 제4권2호
    • /
    • pp.112-117
    • /
    • 2016
  • 본 연구에서는 급속히 성장하고 있는 산업분야인 생분해성 플라스틱인 PLA(Poly Lactic Acid)를 사용하여 개발된 식생매트의 생분해기간에 따른 인장성능을 비교하였다. 시험방법은 한국산업표준(KS)에서 정한 방법을 준용하였다. 단일소재로 제작된 PLA 매쉬 및 PLA 플라스틱으로 실험한 두꼐, 인장강도 및 분자량은 5개월 생분해 기간에 반비례하는 결과를 나타내었다. PLA 매쉬의 두께는 11.2%~13.4% 수준까지 두께가 증가하였으며 PLA 매쉬의 인장강도는 32.4%~55.4% 수준까지 감소하였다. PLA 플라스틱의 인장강도 및 분자량도 시간경과에 따라 감소하는 것을 확인할 수 있었다. 다만, PLA 매쉬, 부직포(씨앗포함) 및 황마네트로 혼합 구성된 식생매트의 인장시험결과는 특정한 경향성을 보이지 못하였다.

흡수성 고정판과 나사를 이용한 중수골 골절의 치료 (Treatment of Metacarpal Bone Fracture Using Biodegradable Plates and Screws)

  • 조정목;은석찬;백롱민
    • Archives of Plastic Surgery
    • /
    • 제38권4호
    • /
    • pp.458-464
    • /
    • 2011
  • Purpose: Metacarpal fractures are common hand injury that may require operative intervention to ensure adequate reduction and stabilization. Traditionally, titanium miniplate was used for rigid fixation of bone fractures. However, the use of permanent plate lends itself to multiple complications such as infection, exposure of the hardware, tendon adhesions, tendon rupture, prolonged pain, bony atrophy and osteoporosis (stress shielding), metal sensitization, and palpation under the skin. This study evaluated the usefulness and stability of biodegradable plates and screws for treatment of metacarpal bone fractures. Methods: There was 17 patients who had surgery for metacarpal bone fracture from April 2007 to June 2010. All patients had open reduction and internal fixation. We used absorbable plates and screws (Inion CPS$^{(R)}$) for internal fixation. Postoperative results were assessed with x-ray. Stability of plates and screws, healing process and its complications were observed by clinical and radiographic assessment. Results: All patients were successfully reduced of bone fracture, and fixations with absorbable plates and screws were stable. The mean follow up period was 7.1 months. 2 patients complained postoperative pain, but they were relieved with analgesics. All patients experienced transient stiffness, but they were relieved with active assistive range of motion after removal of splint. No patients suffered complications which could be occurred by using metallic plate. Conclusion: There was no critical complications such as re-fracture or nonunion among patients. No patients suffered side effects related with metallic implants. Biodegradable implants can offer clinically stable and attractive alternative to metallic implants to stabilize metacarpal bone fractures in the hand.