• Title/Summary/Keyword: Biodegradable Resin

Search Result 44, Processing Time 0.02 seconds

Study on miscibility, morphology, thermal and mechanical properties of elastomeric impact modifier reinforced Poly(lactide)/Cellulose ester blends (충격보강제로 강인화된 PLA와 cellulose ester 블렌드의 상용성 및 모폴로지, 열적, 기계적 특성에 관한 연구)

  • Park, Jun-Seo;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4081-4086
    • /
    • 2014
  • Cellulose acetate butyrate (CAB) is a biodegradable resin with excellent optical properties, but it is difficult to apply film process. In this study, an attempt was made to improve the processability of CAB using polyactic acid and the mechanical properties using an impact modifier. Polylacitc acid (PLA)/Cellulose acetate butyrate (CAB) blends with an impact modifier were prepared using a twin screw extruder. The temperature range was $140^{\circ}C$ to $200^{\circ}C$, and the screw speed was fixed to 200 rpm. To evaluate the miscibility of impact modified CAB/PLA, the glass transition behavior and morphology were observed by DSC and FE-SEM. The mechanical properties were investigated by dynamic mechanical analysis (DMA) and a Universal Testing Machine (UTM). In addition, the effect of an impact modifier in the polymer matrix was determined using a notched Izod impact strength tester. Finally, the PLA/CAB/impact modifier 75/25/10 ratio was found to be a compatible system. In the 10wt.% impact modifier, the sample had a 4 times higher izod impact strength than the non-toughening composition.

Study on Characteristics of PLA/PBAT Composite Film with Various Chain Extenders (고분자 사슬연장제를 이용한 폴리유산 / 폴리부틸렌 아디페이트테레프탈레이트 복합필름의 제조 및 특성 분석)

  • Kim, Sun-jong;Cho, Hyun-seung;Lee, Jae-hwan;You, Myung-je;Um, Yoo-Jun;Park, Su-il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.2
    • /
    • pp.61-66
    • /
    • 2017
  • Poly lactic acid(PLA) and poly butylene adipate-co-terephthalate(PBAT) film was prepared using a twin extruder. PLA (25%) and PBAT (75%) were mixed with various ratio of chain extenders, such as $Joncryl^{(R)}$ and hexamethylene diisocyanate(HDI) to improve the mechanical and thermal properties of produced bio composite films. Tensile strengths of films were steadily increased with increasing ratio of chain extender. The tensile strength of control films was about 25 MPa, and the tensile strength of films with combined chain extenders was above 40 MPa. The films with $Joncryl^{(R)}$ resulted in improved tensile strength, while the film with HDI alone showed improved percent elongation at break. By adding chain extenders into PLA/PBAT resin, the cold crystallization temperature (Tcc) and decomposition temperature (Td) of the produced bio composite films increased. It revealed that the addition of two types of chain extenders was efficient way to get PLA/PBAT film with improved strength and elongation.

Mechanical Properties and Degradability of Bio-degradable Agricultural Transplanting Pot Containing Rice By-product (벼 부산물을 함유한 생분해성 육묘폿트의 기계적 성질 및 분해 특성)

  • Han, Sang-Ik;Kang, Hang-Won;Byun, Dae-Woo;Jang, Ki-Chang;Seo, Woo-Duck;Ra, Ji-Eun;Kim, Jun-Young;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • The bio-degradable transplanting pot containing rice by-product (rice-hull and rice-bran) were developed, and tested their ability for agronomic use. Rice by-products were crosslinked with biodegradable aliphatic ally aromatic copolyesters or urea resin for making transplanting pot. Mechanical properties and degradability of these pots were measured and compared to those of the Jiffy pot (commercially used bio-degradable pot). Mechanical strength was higher than that of Jippy pot, and bio-degradability was excellent under the actual field condition. In addition, the pot could be degraded within 3 months under the ground. Our result indicated bio-degradable pot containing rice by-products has a great potential for such agronomic use.

Study of Non Pressure and Pressure Foam of Bio-based Polymer Containing Blend (바이오 기반 폴리머가 포함된 블렌드의 상압 및 가압 발포 연구)

  • Dong-Hun Han;Young-Min Kim;Danbi Lee;Seongho Son;Geon-hee Seo;Hanseong Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.297-302
    • /
    • 2023
  • There are several methods for shaping foams, but the most commonly used methods involve the use of resin mixed with a foaming agent, which is then foamed under high temperature and pressure in the case of compression foaming, or foamed under high temperature without applying pressure in the case of atmospheric foaming. The polymers used for foaming require design and analysis of optimal foaming conditions in order to achieve foaming under ambient pressure. Environmentally friendly bio-based polymers face challenges when it comes to foaming on their own, which has led to ongoing research in blending them with resins capable of traditional foam production. This study investigates changes in the characteristics of bio-based polymer-EVA blend foams based on variations in the content of bio-based polymers and explores the optimal foaming conditions according to crosslinking. The correlation between foaming characteristics and mechanical properties of the foams was examined. Through this research, we gained insights into how the content of bio-based polymers affects the properties of foams containing bio-based polymers and identified differences between ambient pressure and high-pressure foaming processes. Additionally, the feasibility of commercializing bio-based polymer-EVA composite foams was confirmed.