DOI QR코드

DOI QR Code

Study on Characteristics of PLA/PBAT Composite Film with Various Chain Extenders

고분자 사슬연장제를 이용한 폴리유산 / 폴리부틸렌 아디페이트테레프탈레이트 복합필름의 제조 및 특성 분석

  • Received : 2016.12.30
  • Accepted : 2017.08.14
  • Published : 2017.08.31

Abstract

Poly lactic acid(PLA) and poly butylene adipate-co-terephthalate(PBAT) film was prepared using a twin extruder. PLA (25%) and PBAT (75%) were mixed with various ratio of chain extenders, such as $Joncryl^{(R)}$ and hexamethylene diisocyanate(HDI) to improve the mechanical and thermal properties of produced bio composite films. Tensile strengths of films were steadily increased with increasing ratio of chain extender. The tensile strength of control films was about 25 MPa, and the tensile strength of films with combined chain extenders was above 40 MPa. The films with $Joncryl^{(R)}$ resulted in improved tensile strength, while the film with HDI alone showed improved percent elongation at break. By adding chain extenders into PLA/PBAT resin, the cold crystallization temperature (Tcc) and decomposition temperature (Td) of the produced bio composite films increased. It revealed that the addition of two types of chain extenders was efficient way to get PLA/PBAT film with improved strength and elongation.

고분자 사슬연장제(Chain extender)를 적정 함량별로 넣어 PLA와 PBAT 생분해성 복합 필름을 제조하였으며 제조된 필름의 기계적 특성 및 열적 특성을 분석하였다. 고분자 사슬연장제인 $Joncryl^{(R)}$과 헥사메틸렌 디이시소시아네이트(HDI, Hexamethylene Diisocyanate)를 각각 단일로 넣었을 경우, 고분자 사슬연장제의 함량 증가에 따라 인장강도(Tensile strength)가 함량에 비례하여 소폭 증가하는 영향을 주는 것으로 나타났으나, 연신율에 있어서는 비례적인 차이를 나타내지 않았다. 하지만 두 종류의 사슬연장제를 적정비율로 같이 넣어 압출한 결과 인장강도가 40 MPa에 이르는 것으로 나타나 대조구의 인장강도 25 MPa보다 약 15 MPa 정도 증가하여 강도개선의 효과가 있는것으로 나타났으며 연신율의 경우 대조구보다 개선된 것으로 나타났다.

Keywords

References

  1. Xiao, L., Wang, B., Yang, G., et al. 2012. Poly(lactic acid)- based biomaterials: synthesis, modification and applications. In Biomedical Science, Engineering and Technology, ed G Dhanjoo N., InTech, pp. 247-282.
  2. Lasprilla, A., Martinez, G., Lunelli, B., et al. 2012. Polylactic acid synthesis for application in biomedical devices - a review. Biotechnol. Adv. 30: 321-328. https://doi.org/10.1016/j.biotechadv.2011.06.019
  3. Arruda, L. C., Magaton, M., Bretas, R., et al. 2015. Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym. Test. 43: 27-37. https://doi.org/10.1016/j.polymertesting.2015.02.005
  4. Picard, E., Espuche, E., and Fulchiron, R. 2011. Applied clay science effect of an organo-modi fi ed montmorillonite on pla crystallization and gas barrier properties. Appl. Clay Sci. 53: 58-65. https://doi.org/10.1016/j.clay.2011.04.023
  5. Bouakaz, B. S., Pillin, I., Habi, A., et al. 2015. Synergy between fillers in organomontmorillonite/graphene-PLA nanocomposites. Appl. Clay Sci. 116-117: 69-77. https://doi.org/10.1016/j.clay.2015.08.017
  6. Park, E. J., Park, H., and Kim, D. 2015. Effects of nucleating agents and plasticizers on the crystallinity and crystal structure of PLA(polylactic acid). J. Korea Acad. Coop. Soc. 16: 914-920.
  7. Hirata, M. and Kimura, Y. 2008. Thermomechanical properties of stereoblock poly(lactic acid)s with different PLLA/ PDLA block compositions. Polymer (Guildf). 49: 2656-2661. https://doi.org/10.1016/j.polymer.2008.04.014
  8. Suzuki, K. 2013. A study on mechanical properties of short kenaf fiber reinforced polylactide (PLA) composites. J. Solid Mech. Mater. Eng. 7: 439-454. https://doi.org/10.1299/jmmp.7.439
  9. Wu, J. H., Yen, M. S., Wu, C. P., et al. 2013. Effect of biaxial stretching on thermal properties, shrinkage and mechanical properties of poly(lactic acid) films. J. Polym. Environ. 21: 303-311. https://doi.org/10.1007/s10924-012-0523-5
  10. Rasal, R. M. and Hirt, D. E. 2009. Toughness decrease of PLA-PHBHHX blend films upon surface-confined photopolymerization. J. Biomed. Mater. Res. A. 88: 1079-1086.
  11. Na, K., Lee, K. H., Lee, D. H., et al. 2006. Biodegradable thermo-sensitive nanoparticles from poly(l-lactic acid)/poly (ethylene glycol) alternating multi-block copolymer for potential anti-cancer drug carrier. Eur. J. Pharm. Sci. 27: 115-122. https://doi.org/10.1016/j.ejps.2005.08.012
  12. Kim, D., Min, C. H., Park, H. Y., et al. 2013. Modification of pla/pbat blends and thermal/mechanical properties. Korean Soc. Ind. Eng. Chem. 24: 104-111.
  13. Arruda, L. C., Magaton, M., Bretas, R. E. S., et al. 2015. Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym. Test. 43: 27-37. https://doi.org/10.1016/j.polymertesting.2015.02.005
  14. Al-Itry, R., Lamnawar, K., and Maazouz, A. 2012. Improvement of thermal stability, rheological and mechanical properties of pla, pbat and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 97: 1898-1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028
  15. Li, H., and Huneault, M. A. 2011. Effect of chain extension on the properties of pla/tps blends. J. Appl. Polym. Sci. 122: 134-141. https://doi.org/10.1002/app.33981
  16. Woo, S. I., Kim, B. O., Jun, H. S., et al. 1995. Polymerization of aqueous lactic acid to prepare high molecular weight poly (lactic acid) by chain-extending with hexamethylene diisocyanate. Polym. Bull. 35: 415-421. https://doi.org/10.1007/BF00297606
  17. Moon, S., Taniguchi, I., Miyamoto, M., et al. 2001. Synthesis and properties of high-molecular-weight poly (l-lactic acid) by melt / solid polycondensation under different reaction conditions. High Perform. Polym. 13: 189-196. https://doi.org/10.1088/0954-0083/13/2/317
  18. Shi, D., Hua, J., Zhang, L., et al. 2015. Synthesis of biobased poly(lactic acid-co-10-hydroxy decanoate) copolymers with high thermal stability and ductility. Polymers (Basel). 7: 468-483. https://doi.org/10.3390/polym7030468
  19. Kizil, R., Irudayaraj, J., and Seetharaman, K. 2002. Characterization of irradiated starches by using FT-raman and FTIR spectroscopy. J. Agric. Food Chem. 50: 3912-3918. https://doi.org/10.1021/jf011652p