• Title/Summary/Keyword: Bioconcentration

Search Result 79, Processing Time 0.026 seconds

Bioconcentration of Cadmium by Vermicomposting (Vermicomposting에 의한 카드뮴(Cd)의 생물적 농축)

  • Park, Bo-Rha;Lee, Ju-Sam
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.2
    • /
    • pp.39-45
    • /
    • 1997
  • This study was performed to investigate the growth response of earthworm (Eisenia foetida) in cow manure added Cadmium (Cd) and therefore, to estimate the toxic threshold level of Cadmium and the levels of Cadmium in cow manure for obtain-ing the maximum Cadmium-concentration enable to accumulate in earthworm tis-sue. Seven different concentrations of Cadmium added in cow manure were 0 (control), 50, 100, 200, 400, 800, 1600 mg/kg, respectively. Survival rate (SR), mean fresh weight of adult worm at final time ($FW_2$), increasing rate (IR), number of cocoon (NC), number of young worm (NY) and residual matter (RW) were not significantly different among Cadmium concentrations in cow manure. Of the measured growth-characteristics, survival rate (SR) had a significantly positive correlation (p<0.001) with number of cocoon (NC). But mean fresh weight of adult worm at final time ($FW_2$) had a significantly negative correlation (p<0.05) with residual matter of cow manure. The maximum Cadmium concentration accumulated in tissue was ranged from 283.8 mg/kg to 396.2 mg/kg. It was obtained at the level of 956.5 mg/kg and 1116.6 mg/kg in cow manure added Cadmium, respectively.

  • PDF

Initial Risk Assessment of Acetanilide with Respect to Ecological Integrity (아세트아닐리드의 초기 환경위해성 평가)

  • Lee, Su-Rae;Park, Seon-Ju;Lee, Mi-Kyung;Nam, U-Kyung;Chung, Sun-Hwa;Seog, Geum-Su;Park, Kwang-Sik;Kim, Kyun;Kim, Yong-Hwa
    • Environmental Analysis Health and Toxicology
    • /
    • v.15 no.1_2
    • /
    • pp.19-29
    • /
    • 2000
  • Acetanilide may be released into the environment through air and wastewater from its production and use sites as an intermediate in the synthesis of pharmaceuticals and dyes. Acetanilide is biodegraded rapidly under aerobic conditions and decomposed by indirect photolysis in the presence of OH radicals. An estimated bioconcentration factor of 4.5 suggests that bioaccumulation in aquatic organisms is low. Ecotoxicological data on acetanilide exist on acute toxicity to fishes of 4 species only. According to the EUSES system, the lowest PNEC (Predicted no effect concentration) in fishes is 0.01 mg/1 and PEC (Predicted environmental concentration) for surface water on a regional scale is 9.1$\times$10$\^$-5/mg/l as the worst case. RCR (Risk characterization ratio) of acetanilide for surface water on a regional scale was estimated as 9.1$\times$10-3, which is safe enough for fishes, RCR on a local basis slightly exceeds the value 1 in water and sediment; that is, 1.3 and 1.6, respectively, which suggests the existence of ecotoxicological risk at the vicinity of the manufacturing site. For the refinement of environmental risk assessment on acetanilide, more data should be collected regarding prolonged fish toxicity, acute toxicity toward daphnia and algae. It is, therefore, recommended that acetanilide should be a candidate for further work to supplement the lacking data until it is proved to be safe in the ecotoxicological aspects.

  • PDF

Initial Risk Assessment of Benzoyl peroxide in Environment (Benzoyl peroxide의 환경에서의 초기 위해성 평가)

  • Kim Mi Kyoung;Bae Heekyung;Kim Su-Hyon;Song Sanghwan;Koo Hyunju;Park Kwangsik;Lee Moon-Soon;Jeon Sung-Hwan;Na Jin-Gyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,371 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. In this study, Quantitative Structure-Activity Relationships (QSAR) are used for getting adequate information on the physical -chemical properties of this chemical. And hydrolysis in water, acute toxicity to aquatic and terrestrial organisms for benzoyl peroxide were studied. The physical -chemical properties of benzoyl peroxide were estimated as followed; vapor pressure=0.00929 Pa, Log $K_{ow}$ = 3.43, Henry's Law constant=3.54${\times}$10$^{-6}$ atm-㎥/mole at $25^{\circ}C$, the half-life of photodegradation=3 days and bioconcentration factor (BCF)=92. Hydrolysis half-life of benzoyl peroxide in water was 5.2 hr at pH 7 at $25^{\circ}C$ and according to the structure of this substance hydrolysis product was expected to benzoic acid. Benzoyl peroxide has toxic effects on the aquatic organisms. 72 hr-Er $C_{50}$ (growth rate) for algae was 0.44 mg/1.,48 hr-E $C_{50}$ for daphnia was 0.07mg/L and the 96hr-L $C_{50}$ of acute toxicity to fish was 0.24mg/L. Acute toxicity to terrestrial organisms (earth worm) of benzoyl peroxide was low (14 day-L $C_{50}$ = > 1,000 mg/kg). Although benzoyl peroxide is high toxic to aquatic organisms, the substance if not bioaccumulated because of the rapid removal by hydrolysis (half-life=5.2 hr at pH 7 at $25^{\circ}C$) and biodegradation (83% by BOD after 21 days). The toxicity observed is assumed to be due to benzoyl peroxide rather than benzoic acid, which shows much lower toxicity to aquatic organisms. One can assume that effects occur before hydrolysis takes place. From the acute toxicity value of algae, daphnia and fish, an assessment factor of 100 was used to determine the predicted no effect concentration (PNEC). The PNEC was calculated to be 0.7$\mu\textrm{g}$/L based on the 48 hr-E $C_{50}$ daphnia (0.07 mg/L). The substance shows high acute toxicity to aquatic organisms and some information indicates wide-dispersive ore of this substance. So this substance is, a candidate for further work, even if it hydrolysis rapidly and has a low bioaccumulation potential. This could lead to local concern for the aquatic environment and therefore environmental exposure assessment is recommended.

Effects of Temperature on the Uptake and Retention of Cesium-137 by the Clam Cyclina sinensis (가무락조개에 의한 세슘-137 의 농축(濃縮)과 잔류(殘留)에 미치는 온도(溫度)의 영향)

  • Yoo, Byung-Sun;Lee, Jeong-Ho;Lee, Su-Rae
    • Korean Journal of Environmental Agriculture
    • /
    • v.2 no.1
    • /
    • pp.24-29
    • /
    • 1983
  • The effects of temperature on the uptake of $^{137}Cs$ from seawater and on the retention after its uptake by the clam Cycling sinensis was investigated under laboratory conditions. The clams exhibited a greater bioaccumulation of $^{137}Cs$ in $25^{\circ}C$-acclimated animals than those acclimated at $15^{\circ}C$. The viscera of the clams reached the highest bioconcentration factor after 14 days uptake from seawater, but the tissue distribution pattern of $^{137}Cs$ was little influenced, if any, by the uptake temperature. The uptake rate slightly decreased with an increase of temperature in order of $10^{\circ}C$. The radionuclide accumulated in clams was released again in a radionuclide-free seawater according to a two-exponential compartment model. A temperature increase of $10^{\circ}C$ reduced the biological half-life of the long-lived component with a factor of about two, whereas it caused no change in the short-lived component.

  • PDF

Numerical Simulation of PFOA in Tokyo Bay using EMT-3D (EMT-3D 모델을 이용한 동경만의 PFOA 시뮬레이션)

  • Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2007
  • A three-dimensional ecological model (EMT-3D) was applied to Tokyo Bay for the simulation of PFOA. EMT-3D was calibrated with seawater analysis data obtained from the study area in 2004. The simulated results of dissolved PFOA were in good agreement with the observed values, with a correlation coefficient(R) of 0.7115${\sim}$0.8759 and a coefficient of determination $(R^2)$ of 0.5062${\sim}$0.7672. The results of sensitivity analysis showed that partition rate, adsorption rate and settling rate were important factors for PFOA in particulate organic matter. In the case of PFOA in phytoplankton, bioconcentration factor, uptake rate and partition rate were important factors. Therefore, the parameters must be carefully considered in the modeling. In the case of 50% and 80% total loads reduction, concentration of dissolved PFOA was shown to be lower than 20ng/L and 10ng/L, respectively. In the case of reduction of loads from rivers in each prefecture, Tokyo prefecture was found to have the most influence on the change of dissolved PFOA in surface water while Chiba prefecture was found to have the most influnce on the change of dissolved PFOA in bottom water.

  • PDF

Soil Residues and Absorption-translocation into Red Lettuce and Young Radish Crops of Veterinary Antibiotics According to Agricultural Water Irrigation Method (농업용수 관개방법에 따른 축산용 항생제의 토양중 잔류와 적상추와 열무 작물로의 흡수·이행)

  • Park, Young-Jae;Jeon, Hee-Su;Cho, Jae-Young
    • Korean Journal of Organic Agriculture
    • /
    • v.32 no.1
    • /
    • pp.107-125
    • /
    • 2024
  • Three types of veterinary antibiotics, including oxytetracycline (OTC) and chlortetracycline (CTC) of tetracycline class and amoxicillin (AMX) of penicilline class, were artificially introduced into the irrigation water. The residue of veterinary antibiotics in the soil, the absorption-translocation of veterinary antibiotics into the red lettuce and young radish plant, and crops yield were investigated according to the agricultural water irrigation method (surface drip irrigation, underground drip irrigation, and sprinkler irrigation). There was no significant difference in the residue and translocation of veterinary antibiotics in the soils and crops according to the irrigation method and type of veterinary antibiotics (p>0.05). For the edible parts of red lettuce and young radish, all three types of veterinary antibiotics were found to be below the detection limit, indicating that the safety of the crops was secured. The translocation factor of red lettuce and young radish were found to be less than 0.3 and 0.2, respectively. However, continuous introduction of veterinary antibiotics in agricultural arable lands may have negative effects by affecting soil microbial activity and soil microbe species diversity, so continuous management is deemed necessary.

Effect of Trace Metal on Accumulation and Physiological Response of the Polychaete, Perinereis nuntia (미량금속 노출에 따른 갯지렁이(Perinereis nuntia)의 미량금속 축적 및 생리학적인 반응)

  • Won, Eun-Ji;Ra, Kong-Tae;Hong, Seong-Jin;Kim, Kyung-Tae;Lee, Jae-Seong;Shin, Kyung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.288-295
    • /
    • 2010
  • Metal exposure experiments using polychaete (Perinereis nuntia) as a bio-indicator of trace metals contamination were conducted to evaluate the bioaccumulation and the biomarkers responses such as metallothionein-like protein (MTLPs) and glutathione S-transferase (GST) which was simultaneously exposed to Cadmium (Cd) and Copper (Cu). Cu and Cd concentrations in polychaete were enhanced with increasing exposure time and their concentrations of aqueous medium. Initial accumulation of Cd was higher than that of Cu. Our results showed that the bioaccumulation of Cu and Cd were prohibited, especially at higher Cu levels, suggesting the different cellular uptake mechanisms when Cu and Cd are co-exist. Net accumulation rate of Cu was declined with exposure time but it did not show any significant change for Cd. Although the highest MTLPs concentration was observed at 6 hr of exposure time, it did not show any significant change related to exposure times and metals concentrations. An increase of GST activity tended to increase as a function of exposure time and metals concentrations. And GST activities in P. nuntia have similar tendency with bioconcentration factors in high concentration of Cu (treatment group IV) at post 24 h of exposure. Our results provide new information of the bioaccumulation and biomarker responses to understand the effects of co-existing contaminants (Cu and Cd) using polychaete. Further studies are required to elucidate the bioaccumulation and biomarkers responses for various contaminants.

Initial Ecological Risk Assessment of 1,2-Benzisothiazol-3-one in Environment (환경 중 1,2-Benzisothiazol-3-one에 대한 초기 생태위해성 평가)

  • Han, Hye-Jin;Kim, EunJu;Yoo, SunKyoung;Ro, Hi-Young;Baek, Yong-Wook;Shim, IlSeob;Eom, Ig-Chun;Kim, Hyun-Mi;Kim, PilJe;Choi, Kyunghee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • In this study, physico-chemical properties and environmental fate were investigated and ecotoxicity tests using fish, daphnia and algae were conducted for an initial ecological risk assessment of 1,2-Benzisothiazol-3-one. Due to low volatility of the test substance under environmental conditions, it is likely to distributed in soil and water environment. The compound has low adsorption in the soil, with low bioconcentration potential. Acute toxicity results showed that 96 h-$LC_{50}$ for Oryzias laties was 4.7 mg/L (measured) and 48h-$EC_{50}$ for Daphnia magna was 3.3 mg/L (measured). In a growth inhibition test with Pseudokirchneriella subcapitata, 72 h-$EC_{50}$ was 0.456 mg/L (growth rate, nominal) and 0.262 mg/L (yield, nominal). Using the acute toxicity value of algae, predicted no-effect concentration (PNEC) in the aquatic environment was determined to be 2.62 ${\mu}g/L$ using an factor of 100. According to globally harmonized system (GHS), the compound was categorized as aquatic acute 1 for algae, while it was categorized as aquatic acute 2 for fish and daphnia. This screening assessment suggests that the test substance may pose ecological risks in the aquatic environment.

Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals (3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발)

  • ChanHyeok Jeong;SangYoun Kim;SungKu Heo;Shahzeb Tariq;MinHyeok Shin;ChangKyoo Yoo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.523-541
    • /
    • 2023
  • As accessibility to 3D printers increases, there is a growing frequency of exposure to chemicals associated with 3D printing. However, research on the toxicity and harmfulness of chemicals generated by 3D printing is insufficient, and the performance of toxicity prediction using in silico techniques is limited due to missing molecular structure data. In this study, quantitative structure-activity relationship (QSAR) model based on data-centric AI approach was developed to predict the toxicity of new 3D printing materials by imputing missing values in molecular descriptors. First, MissForest algorithm was utilized to impute missing values in molecular descriptors of hazardous 3D printing materials. Then, based on four different machine learning models (decision tree, random forest, XGBoost, SVM), a machine learning (ML)-based QSAR model was developed to predict the bioconcentration factor (Log BCF), octanol-air partition coefficient (Log Koa), and partition coefficient (Log P). Furthermore, the reliability of the data-centric QSAR model was validated through the Tree-SHAP (SHapley Additive exPlanations) method, which is one of explainable artificial intelligence (XAI) techniques. The proposed imputation method based on the MissForest enlarged approximately 2.5 times more molecular structure data compared to the existing data. Based on the imputed dataset of molecular descriptor, the developed data-centric QSAR model achieved approximately 73%, 76% and 92% of prediction performance for Log BCF, Log Koa, and Log P, respectively. Lastly, Tree-SHAP analysis demonstrated that the data-centric-based QSAR model achieved high prediction performance for toxicity information by identifying key molecular descriptors highly correlated with toxicity indices. Therefore, the proposed QSAR model based on the data-centric XAI approach can be extended to predict the toxicity of potential pollutants in emerging printing chemicals, chemical process, semiconductor or display process.