• 제목/요약/키워드: Biocompatible

검색결과 442건 처리시간 0.02초

탄소계 경질 박막의 연구 및 산업 적용 동향 (Trend in Research and Application of Hard Carbon-based Thin Films)

  • 이경황;박종원;양지훈;정재인
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

Mineral trioxide aggregate, calcium sulfate와 calcium hydroxide의 치수에 대한 반응 (Pulp Response of Mineral Trioxide Aggregate, Calcium Sulfate or Calcium Hydroxide)

  • 윤영란;양인석;황윤찬;황인남;최홍란;윤숙자;김선헌;오원만
    • Restorative Dentistry and Endodontics
    • /
    • 제32권2호
    • /
    • pp.95-101
    • /
    • 2007
  • 개의 치수에 MTA, calcium hydroxide 및 calcium sulfate로 치수복조 후 치수 반응을 서로 비교하여 MTA와 calcium sulfate가 임상적으로 치수복조제로서 사용 가능할 것인가를 구명하고자 본 연구를 시행하였다. 8개월 된 2마리 개의 24개의 치아가 본 연구에 사용되었다 전신 마취하에 고속 핸드피스를 사용하여 멸균된 #2 round bur로 치경부에 와동을 형성한 후 치수를 노출시켰다. MTA, calcium hydroxide 및 calcium sulfate를 치수노출부에 도포하였다. 와동 부위는 IRM으로 가봉하고 광중합레진으로 수복하였다. 처리 2개월 후, 전신 마취하에 희생시킨 후 조직학적으로 관찰하였다. MTA처리군에서는 치수 노출부위에 경조직의 상아질교가 형성되었으며 새로 형성된 상아질교 하방에 조상아세포가 새로 형성되었다. 치수충혈과 함께 국소적 인 혈관 증식 이 나타났으며 치수에 염증반응은 나타나지 않았다. Calcium hydroxide로 처리한 군은 상아질교 하방에 조상아세포가 관찰되지 않았으며 만성 염증반응이 다양하게 나타났다. Calcium sulfate로 처리한 군은 경조직의 상아질교가 관찰되었으며, 상아질교 하방에 조상아세포 층이 새로 관찰되었다. 몇몇의 중성구 침윤과 함께 미약한 정도의 만성염증반응이 관찰되었다. 이상의 결과에서 MTA가 calcium hydroxide및 calcium sulfate에 비해 치수에 생체친화적임을 시사하며 기계적 치수노출시 치수복조제로 사용할 수 있음을 시사한다.