• Title/Summary/Keyword: Bioclim 모형

Search Result 4, Processing Time 0.017 seconds

Selection of Optimal Models for Predicting the Distribution of Invasive Alien Plants Species (IAPS) in Forest Genetic Resource Reserves (산림생태계 보호구역에서 외래식물 분포 예측을 위한 최적 모형의 선발)

  • Lim, Chi-hong;Jung, Song-hie;Jung, Su-young;Kim, Nam-shin;Cho, Yong-chan
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.589-600
    • /
    • 2020
  • Effective conservation and management of protected areas require monitoring the settlement of invasive alien species and reducing their dispersion capacity. We simulated the potential distribution of invasive alien plant species (IAPS) using three representative species distribution models (Bioclim, GLM, and MaxEnt) based on the IAPS distribution in the forest genetic resource reserve (2,274ha) in Uljin-gun, Korea. We then selected the realistic and suitable species distribution model that reflects the local region and ecological management characteristics based on the simulation results. The simulation predicted the tendency of the IAPS distributed along the linear landscape elements, such as roads, and including some forest harvested area. The statistical comparison of the prediction and accuracy of each model tested in this study showed that the GLM and MaxEnt models generally had high performance and accuracy compared to the Bioclim model. The Bioclim model calculated the largest potential distribution area, followed by GLM and MaxEnt in that order. The Phenomenological review of the simulation results showed that the sample size more significantly affected the GLM and Bioclim models, while the MaxEnt model was the most consistent regardless of the sample size. The optimal model overall for predicting the distribution of IAPS among the three models was the MaxEnt model. The model selection approach based on detailed flora distribution data presented in this study is expected to be useful for efficiently managing the conservation areas and identifying the realistic and precise species distribution model reflecting local characteristics.

Applying Ensemble Model for Identifying Uncertainty in the Species Distribution Models (종분포모형의 불확실성 확인을 위한 앙상블모형 적용)

  • Kwon, Hyuk Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.47-52
    • /
    • 2014
  • Species distribution models have been widely applied in order to assess biodiversity, design reserve, manage habitat and predict climate change. However, SDMs has been used restrictively to the public and policy sectors owing to model uncertainty. Recent studies on ensemble and consensus models have been increased to reduce model uncertainty. This paper was carried out single model and multi model for Corylopsis coreana and compares two models. First, model evaluation was used AUC, kappa and TSS. TSS was the most effective method because it was easy to compare several models and convert binary maps. Second, both single and ensemble model show good performance and RF, Maxent and GBM was evaluated higher, GAM and SRE was evaluated lower relatively. Third, ensemble model tended to overestimate over single model. This problem can be solved by the suitable model selection and weighting through collaboration between field experts and modeler. Finally, we should identify causes and magnitude of model uncertainty and improve data quality and model methods in order to apply special decision-making support system and conservation planning, and when we make policy decisions using SDMs, we should recognize uncertainty and risk.

Climate Change Impact Assessment of Abies nephrolepis (Trautv.) Maxim. in Subalpine Ecosystem using Ensemble Habitat Suitability Modeling (서식처 적합모형을 적용한 고산지역 분비나무의 기후변화 영향평가)

  • Choi, Jae-Yong;Lee, Sang-Hyuk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.1
    • /
    • pp.103-118
    • /
    • 2018
  • Ecosystems in subalpine regions are recognized as areas vulnerable to climatic changes because rainfall and the possibility of flora migration are very low due to the characteristics of topography in the regions. In this context, habitat niche was formulated for representative species of arbors in subalpine regions in order to understand the effects of climatic changes on alpine arbor ecosystems. The current potential habitats were modeled as future change areas according to the climatic change scenarios. Based on the growth conditions and environmental characteristics of the habitats, the study was conducted to identify direct and indirect causes affecting the habitat reduction of Abies nephrolepis. Diverse model algorithms for explanation of the relationship between the emergence of biological species and habitat environments were reviewed to construct the environmental data suitable for the six models(GLM, GAM, RF, MaxEnt, ANN, and SVM). Weights determined through TSS were applied to the six models for ensemble in an attempt to minimize the uncertainty of the models. Based on the current climate determined by averaging the climates over the past 30years(1981~2010) and the HadGEM-RA model was applied to fabricate bioclimatic variables for scenarios RCP 4.5 and 8.5 on the near and far future. The results of models of the alpine region tree species studied were put together and evaluated and the results indicated that a total of eight national parks such as Mt. Seorak, Odaesan, and Hallasan would be mainly affected by climatic changes. Changes in the Baekdudaegan reserves were analyzed and in the results, A. nephrolepis was predicted to be affected the most in the RCP8.5. The results of analysis as such are expected to be finally utilizable in the survey of biological species in the Korean peninsula, restoration and conservation strategies considering climatic changes as the analysis identified the degrees of impacts of climatic changes on subalpine region trees in Korean peninsula with very high conservation values.

Predicting the suitable habitat of the Pinus pumila under climate change (기후변화에 의한 눈잣나무의 서식지 분포 예측)

  • Park, Hyun-Chul;Lee, Jung-Hwan;Lee, Gwan-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.5
    • /
    • pp.379-392
    • /
    • 2014
  • This study was performed to predict the future climate envelope of Pinus pumila, a subalpine plant and a Climate-sensitive Biological Indicator Species (CBIS) of Korea. P. pumila is distributed at Mt. seorak in South Korea. Suitable habitat were predicted under two alternative RCPscenarios (IPCC AR5). The SDM used for future prediction was a Maxent model, and the total number of environmental variables for Maxent was 8. It was found that the distribution range of P. pumila in the South Korean was $38^{\circ}7^{\prime}8^{{\prime}{\prime}}N{\sim}38^{\circ}7^{\prime}14^{{\prime}{\prime}}N$ and $128^{\circ}28^{\prime}2^{{\prime}{\prime}}E{\sim}128^{\circ}27^{\prime}38^{{\prime}{\prime}}E$ and 1,586m~1,688m in altitude. The variables that contribute the most to define the climate envelope are altitude. Climate envelope simulation accuracy was evaluated using the ROC's AUC. The P. pumila model's 5-cv AUC was found to be 0.99966. which showed that model accuracy was very high. Under both the RCP4.5 and RCP8.5 scenarios, the climate envelope for P. pumila is predicted to decrease in South Korea. According to the results of the maxent model has been applied in the current climate, suitable habitat is $790.78km^2$. The suitable habitats, are distributed in the region of over 1,400m. Further, in comparison with the suitable habitat of applying RCP4.5 and RCP8.5 suitable habitat current, reduction of area RCP8.5 was greater than RCP4.5. Thus, climate change will affect the distribution of P. pumila. Therefore, governmental measures to conserve this species will be necessary. Additionally, for CBIS vulnerability analysis and studies using sampling techniques to monitor areas based on the outcomes of this study, future study designs should incorporate the use of climatic predictions derived from multiple GCMs, especially GCMs that were not the one used in this study. Furthermore, if environmental variables directly relevant to CBIS distribution other than climate variables, such as the Bioclim parameters, are ever identified, more accurate prediction than in this study will be possible.