• Title/Summary/Keyword: Biochemical oxygen demand (BOD)

Search Result 182, Processing Time 0.027 seconds

Selection of Optimum System in Constructed Wetlands for Treating the Hydroponic Waste Solution Containing Nitrogen and Phosphorus (질소 및 인 함유 폐양액 처리를 위한 최적 인공습지 시스템 선정)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Seong-Heon;Lee, Choong-Heon;Choi, Jeong-Ho;Kim, Hong-Chul;Lee, Sang-Won;Ha, Yeong Rae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.764-771
    • /
    • 2012
  • In order to develop constructed wetlands for treating hydroponic wastewater in greenhouse, actual constructed wetlands were used the obtained optimum condition in previous study, and the removal rate of pollutant in the water according to 4 kinds connection method of piping such as system A (UP-UP stream), system B (UP-DOWN system), system C (DOWN-UP stream) and system D (DOWN-DOWN stream) were investigated. Removal rate of biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (T-N) and total phosphorus (T-P) by system A (UP-UP stream) connection method in actual constructed wetlands were slightly higher than other systems. At the system A, the removal rate of BOD, COD, SS, T-N and T-P were 88, 77, 94, 54 and 94%, respectively. Under different hydroponic wastewater loading, the removal rates of pollutants were higher in the order of $75L\;m^{-2}day^{-1}{\fallingdotseq}150L\;m^{-2}day^{-1}$ $$\geq_-$$ $300L\;m^{-2}day^{-1}$. Therefore, optimum connection method was system A for treating hydroponic wastewater in greenhouse.

Runoff Characteristics of Non-point Pollutant Sources in an Agricultural Area Watershed (농촌지역 비점오염물질의 유출 특성)

  • Ryu, Kwang-Hyun;Lee, Geon-Jik;Seong, Jin-Uk;Kim, Dong-Sup;Park, Jae-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.178-186
    • /
    • 2011
  • This study was conducted to investigate runoff characteristics of non-point pollutant sources in an agricultural area watershed in Boeun area, Chungbuk Province. The monitoring site represented 1.56 $km^2$, about 44.4% of which was covered with paddy fields. The monitoring was conducted for six events in a period of 5 month. Event Mean Concentration (EMC) and Site Mean Concentration (SMC) of suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (T-N) and total phosphorus (T-P) were calculated using the results of the water quality parameters. A comparison between arithmetic mean concentration and EMC revealed that nearly all EMCs were higher than the corresponding arithmetic mean concentrations. First-flushing effects were exhibited for SS, BOD, and T-P, with relatively high concentrations in early-stage storm events.

The wastewater treatment system with high performance based on electrochemical interface reaction using dimensionally stable anode with simple manufacturing (전기화학 계면반응에 기초한 DSA 전극을 사용한 고성능 폐수처리 시스템)

  • Na, Young Soo;Lee, Man Sung;Kim, Kyoungho
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.101-105
    • /
    • 2018
  • With the rapidly growing of the population and industrization of cities, the clean and affordable water resources have gained immense interest because of remaining about 780 million people still lack access to it. However, present wastewater treatment systems have been faced with various issues, such as low processing efficiency, high operational costs and the requirement of a large area for manufacturing. It is therefore urgently required to develop an inexpensive and efficient wastewater treatment system. As the one of these efforts, we suggested and successfully demonstrated the wastewater treatment system using and electrochemical method via a dimensionally stable anode (DSA) based on rutile type $RuO_2$. Our system achieved biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) removal efficiently at the respective rates of 52.0%, 77.8%, and 65.6% from household wastewater. In addition, we were able to remove BOD, COD, total nitrogen (TN), and total phosphorus (TP) from animal husbandry wastewater at rates of 92.9%, 75.6%, 35.1%, and 100%, respectively, thereby achieving dramatic reductions. Considering the excellent removal efficiency and the small size of this device, electrochemical wastewater treatment using a DSA coated in rutile $RuO_2$ presents a promising option for the treatment of both household and animal husbandry wastewater.

Constructed Wetlands in Treating Domestic and Industrial Wastewater in India: A Review (인도의 가정 및 산업 폐수 처리를 위한 인공습지: 총론)

  • Farheen, K.S.;Reyes, N.J.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.23 no.3
    • /
    • pp.242-251
    • /
    • 2021
  • Surface water pollution is a serious environmental problem in developing countries, like India, due to the unregulated discharge of untreated wastewater. To overcome this, the constructed wetlands (CWs) have been proven to be an efficient technology for wastewater treatment. In this study, different existing and experimental facilities were reviewed to be able to determine the current status of constructed wetlands in India. Based on the collected data from published literature, industrial wastewater contained the highest average chemical oxygen demand (COD), biochemical oxygen demand (BOD). In terms of total nitrogen (TN), Total phosphorous (TP), the lowest concentration was found on domestic wastewater. Vertical flow constructed wetlands (VFCW) and Horizontal flow constructed wetland (HFCW) were more effective in removing TSS, BOD, TP in domestic and industrial wastewater, whereas hybrid constructed wetlands (HCW) showed the highest removal for COD. The use of constructed wetlands as advanced wastewater treatment facilities in India yielded better water quality. The treatment of wastewater using constructed wetlands also enabled further reuse of wastewater for irrigation and other agricultural purposes. Overall, this study can be beneficial in evaluating and promoting the use of constructed wetlands in India.

Improvement Method for the Post-Management End System of a Landfill by Applying Total Pollutant Load Concept (오염총량 개념을 적용한 매립장 사후관리종료제도 개선 방안)

  • Chun, Seung-Kyu;Sim, Nak-Jong;Jeon, Eun-Jeong;Ryu, Don-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.15-23
    • /
    • 2021
  • A method of improving the post-management end system of a landfill that reflected total pollutant load was applied to the SUDOKWON 1st Landfill Site. Modeling results showed that the ratio of remaining methane, when compared to the total maximum potential of 2,521 × 106 Nm3, was estimated to be 8.8% in 2020, 7.0% in 2030, and 6.5% in 2040. If the average oxidation rate of 89.1% in 2005-2019 was applied, the ratio decreased by 1.01% in 2020, 0.76% in 2030, and 0.70% in 2040. This suggests that if the amount of methane generated is all emitted from the surface of the landfill after 2025, the real amount emitted to the atmosphere is less than that in 2019; therefore, the post-management end is possible. According to the results of trend analysis of the quality of leachate water, effluent criteria for Biochemical Oxygen Demand (BOD) can be satisfied in 2024, while those for Chemical Oxygen Demand (COD) and Total Nitrogen (T-N) can be satisfied in 2047 and 2117, respectively. If the post-management end system changed based on total pollutant load, the post-management can be terminated BOD today and COD within a few years; however, the fact that T-N could be terminated only after 2041 shows the need to fundamentally change management methods.

Priority Selection of Water Quality Improvement Through Water Quality Data of Tributaries of Nakdong River (낙동강수계 지류 수질자료를 통한 수질개선 우선순위 선정)

  • Shim, Kyuhyun;Shin, Sangmin;Kim, Seongmin;Kim, Youngseok;Kim, Gyeonghoon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.364-372
    • /
    • 2020
  • The "Master Plan for the Revitalization of Water in the Nakdong River" is designed for the fundamental improvement of water quality in the Nakdong River. The water quality and flow of the Nakdong River system tributaries was monitored in this study. Among the living environmental standard parameters of 195 rivers, BOD (Biochemical oxygen demand), T-P (Total phosphorus) and TOC (Total organic carbon) were assessed to analyze the water quality from 2012 to 2019. We examined the role of TOC. It was found that 12 rivers exceeded the water quality of the second grade (3.0 mg/L BOD standard, 0.1 mg/L T-P standard, 4.0 mg/L TOC standard) based on BOD and T-P concentrations: the Gumi stream, Gisegok stream, Yongha stream, Yongho stream, Changnyeong stream, Gajwa stream, Gwangok stream, Yeongsan stream, Toerae stream, Hwapo stream, Sangnam stream and Hogye stream. These rivers require strategies to improve the quality of the Nakdong River. Based on the ongoing project, it is possible to supplement the "Master Plan for the Revitalization of Water in the Nakdong River" and manage it after verifying it as a component of people's life and therefore used to establish water quality control measures.

Evaluation of long-term water quality management policy effect using nonparametric statistical methods

  • Jung, Kang Young;Ahn, Jung Min;Cho, Sohyun;Lee, Yeong Jae;Han, Kun Yeun;Shin, Dongseok;Kim, Kyunghyun
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.339-352
    • /
    • 2019
  • Long term water quality change was analyzed to evaluate the effect of the Total Maximum Daily Load (TMDL) policy. A trend analysis was performed for biochemical oxygen demand (BOD) and total phosphorus (TP) concentrations data monitored at the outlets of the total 41 TMDL unit watersheds of the Nakdong River in the Republic of Korea. Because water quality data do not usually follow a normal distribution, a nonparametric statistical trend analysis method was used. The monthly mean values of BOD and TP for the period between 2004 and 2015 were analyzed by the seasonal Mann-Kendall test and the locally weighted scatterplot smoother (LOWESS). The TMDL policy effect on the water quality change of each unit watershed was analyzed together with the results of the trend analysis. From the seasonal Mann-Kendall test results, it was found that for BOD, 7.8 % of the 41 points showed downward trends, 26.8 % and the rest 65.9% showed upward and no trends. For TP, 51.2% showed no trends and the rest 48.8% showed downward trends. From the LOWESS analysis results, TP began to decrease in most of the unit watersheds from mid-2010s when intensive chemical treatment processes were introduced to existing wastewater treatment plants. Overall, for BOD, relatively more points were improved in the main stream compared to the points of the tributaries although overall trends were mostly no trend or upward. For TP, about half of the points were improved and the rest showed no trends.

Estimation of Fish Habitat Suitability Index for Stream Water Quality - Case Species of Zacco platypus - (하천 수질에 대한 어류의 서식처적합도지수 산정 - 피라미를 대상으로 -)

  • Hong, Rokgi;Park, Jinseok;Jang, Seongju;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.89-100
    • /
    • 2021
  • The conservation of stream habitats has been gaining more public attention and fish habitat suitability index (HSI) is an important measure for ecological stream habitat assessment. The fish habitat preference is affected not only by physical stream conditions but also by water quality of which HSI was not available due to the lack of field data. The purpose of this study is to estimate the HSI of Zacco platypus for water quality parameters of water temperature, dissolved oxygen (DO), and biochemical oxygen demand (BOD) using the water environment monitoring data provided by the Ministry of Environment (ME). Fish population data merged with water quality were constructed by spatio-temporal matching of nationwide water quality monitoring data with bio-monitoring data of the ME. Two types of the HSI were calculated by the Instream Flow and Aquatic Systems Group (IFASG) method and probability distribution (Weibull) fitting for the four major river basins. Both the HSIs by the IFASG and Weibull fitting appeared to represent the overall distribution and magnitude of fish population and this can be used in stream fish habitat evaluation considering water quality.

Assessment of Seasonal Variation in Water Quality in Daedong Lake (대동호의 시기별 및 계절별 수질변화 평가)

  • Yun, Jin-Ju;Kang, Se-Won;Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Hyun-Woo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.197-203
    • /
    • 2020
  • BACKGROUND: Most lakes have increased concerns about water pollution due to the inflow of non-point sources caused by human activities. Therefore, the lake water quality survey was conducted in order to propose effective plans for water quality management by analyzing the characteristics of lakes and the change of water quality. METHODS AND RESULTS: In order to investigate the physicochemical water quality in Daedong lake, water quality analysis was undertaken from July 2018 to June 2019. Water temperature was ranged from 7.8 to 34.3℃ and pH varied from 6.9 to 10.2. The concentration of Dissolved oxygen, Suspended solid, Biochemical Oxygen Demand (BOD), and Chemical Oxygen Demand (COD) were 5.6 ~ 17.2 mg/L, 2.4 ~ 35.3 mg/L, and 4.5 ~ 15.1 mg/L, and 0.9 ~ 2.8 mg/L, respectively. The Total Nitrogen (T-N) concentration ranged from 0.974 ~ 2.126 mg/L, and Total Phosphorus (T-P) concentration ranged from 0.014 ~ 0.057 mg/L. The Chlorophyll-a (Chl-a) ranged from 2.7 ~ 37.9 mg/㎥. Through Carlson TSIm assessment using T-P and Chl-a results, evaluating trophic state, Daedong lake was evaluated as mesotrophic. CONCLUSION: Water pollution management plan needs such as nutrient removal technology and nonpoint source management for prevention of eutrophication in Daedong lake.

TiO2 Photocatalytic Reaction on Glass Fiber for Total Organic Carbon Analysis (총유기탄소 분석을 위한 유리섬유를 이용한 이산화티타늄 광촉매 반응)

  • Park, Buem Keun;Lee, Young-Jin;Shin, Jeong Hee;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.102-106
    • /
    • 2022
  • Currently, the demand for real-time monitoring of water quality has increased dramatically. Total organic carbon (TOC) analysis is a suitable method for real-time analysis compared with conventional biochemical oxygen demand (BOD) and chemical oxygen demand (COD) methods in terms of analysis time. However, this method is expensive because of the complicated internal processes involved. The photocatalytic titanium dioxide (TiO2)-based TOC method is simpler as it omits more than three preprocessing steps. This is because it reacts only with organic carbon (OC) without extra processes. We optimized the rate between the TiO2 photocatalyst and binder solution and the TiO2 concentration. The efficiency was investigated under 365 nm UV exposure onto a TiO2 coated substrate. The optimized conditions were sufficient to apply a real-time monitoring system for water quality with a short reaction time (within 10 min). We expect that it can be applied in a wide range of water quality monitoring industries.