• Title/Summary/Keyword: Biobanking

Search Result 5, Processing Time 0.022 seconds

Choosing Optimal STR Markers for Quality Assurance of Distributed Biomaterials in Biobanking

  • Chung, Tae-Hoon;Lee, Hee-Jung;Lee, Mi-Hee;Jeon, Jae-Pil;Kim, Ki-Sang;Han, Bok-Ghee
    • Genomics & Informatics
    • /
    • v.7 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • The quality assurance (QA) is of utmost importance in biobanks when archived biomaterials are distributed to biomedical researchers. For sample authentication and cross-contamination detection, the two fundamental elements of QA, STR genotyping is usually utilized. However, the incorporated number of STR markers is highly redundant for biobanking purposes, resulting in time and cost inefficiency. An index to measure the cross-contamination detection capability of an STR marker, the mixture probability (MP), was developed. MP as well as other forensic parameters for STR markers was validated using STR genotyping data on 2328 normal Koreans with the commercial AmpFlSTR kit. For Koreans, 7 STR marker (D2S1338, FGA, D18S51, D8S1179, D13S317, D21S11, vWA) set was sufficient to provide discrimination power of ${\sim}10^{-10}$ and cross-contamination detection probability of ${sim}1$. Interestingly, similar marker sets were obtained from African Americans, Caucasian Americans, and Hispanic Americans under the same level of discrimination power. Only a small subset of commonly used STR markers is sufficient for QA purposes in biobanks. A procedure for selecting optimal STR markers is outlined using STR genotyping results from normal Korean population.

In vitro culture of chicken embryonic stem cell-like cells

  • Bo Ram Lee;Hyeon Yang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • Chicken embryonic stem (ES) cells have great potential and provide a powerful tool to investigate embryonic development and to manipulate genetic modification in a genome. However, very limited studies are available on the functional characterization and robust expansion of chicken ES cells compared to other species. Here, we have developed a method to generate chicken embryonic stem cell-like cells under pluripotent culture conditions. The chicken embryonic stem cell-like cells were cultivated long-term over several passages of culture without loss of pluripotency in vitro and had the specific expression of key stem cell markers. Furthermore, they showed severe changes in morphology and a significant reduction in pluripotent genes after siRNA-mediated NANOG knockdown. Collectively, these results demonstrate the efficient generation of chicken embryonic stem cell-like cells from EGK stage X blastoderm-derived singularized cells and will facilitate their potential use for various purposes, such as biobanking genetic materials and understanding stemness in the fields of animal biotechnology.

Standard operating procedures for the collection, processing, and storage of oral biospecimens at the Korea Oral Biobank Network

  • Young-Dan Cho;Eunae Sandra Cho;Je Seon Song;Young-Youn Kim;Inseong Hwang;Sun-Young Kim
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.5
    • /
    • pp.336-346
    • /
    • 2023
  • Purpose: The Korea Oral Biobank Network (KOBN) was established in 2021 as a branch of the Korea Biobank Network under the Korea Centers for Disease Control and Prevention to provide infrastructure for the collection, management, storage, and utilization of human bioresources from the oral cavity and associated clinical data for basic research and clinical studies. Methods: To address the need for the unification of the biobanking process, the KOBN organized the concept review for all the processes. Results: The KOBN established standard operating procedures for the collection, processing, and storage of oral samples. Conclusions: The importance of collecting high-quality bioresources to generate accurate and reproducible research results has always been emphasized. A standardized procedure is a basic prerequisite for implementing comprehensive quality management of biological resources and accurate data production.

Comprehensive Review of Domestic and Foreign Biomonitoring Programs and Current Status of Bio-sample Application (국내외 바이오모니터링 프로그램 및 생체시료 활용 현황)

  • Kim, Da Hae;Kim, Sungkyoon;Lee, Seungho;Choi, Yoon-Hyeong;Kim, Jin Hee
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.3
    • /
    • pp.205-226
    • /
    • 2021
  • Objectives: Biomonitoring programs have been widely implemented in the field of environmental health, both in Korea and worldwide. Recently, it has been suggested that the storage, management, and utilization of biosamples collected from biomonitoring programs should be organized based on a biobank system. Therefore, we attempted to review the current status of representative biomonitoring programs and biobank systems that have been implemented in Korea and in other countries. Methods: We searched for bio-samples collected in domestic and foreign biomonitoring programs and their applications. For this, we referred to research papers, homepages hosted by biomonitoring programs, and project reports. We also checked information for biobanks related with biomonitoring programs, including the operating systems, facilities, technologies, and regulations of biobanks. Results: We summarized six domestic and 32 foreign biomonitoring programs. These biomonitoring programs collected bio-samples to determine the relationship between environmental chemicals and diseases. Domestically, bio-samples from KoNEHS, KorSEP, MOCEH, KoCHENS, and KorEHS-C were stored at -80℃ in a deep freezer at the National Institute of Environmental Research, while KNHANES samples were stored at Korea Biobank, which has a stabilized biobanking system with a well-established database. Nine foreign biomonitoring programs (JECS, China-NHBP, CKB, CHMS, NHANES, GerES, Germaan ESB, MoBa, and UK Biobank) were ongoing for large populations. Among them, CKB, GermanESB, and UK biobank have been maintained for at least 10 years with their own biomonitoring programs as well as advanced systems for the safe storage of bio-samples. Conclusion: Currently on-going biobanks have devoted considerable efforts to managing bio-samples for public purposes. The preceding domestic and foreign biomonitoring programs and biobanks will be great references for constructing biobank facilities and systems for environmental public health in Korea in the future.

Establishment of the large-scale longitudinal multi-omics dataset in COVID-19 patients: data profile and biospecimen

  • Jo, Hye-Yeong;Kim, Sang Cheol;Ahn, Do-hwan;Lee, Siyoung;Chang, Se-Hyun;Jung, So-Young;Kim, Young-Jin;Kim, Eugene;Kim, Jung-Eun;Kim, Yeon-Sook;Park, Woong-Yang;Cho, Nam-Hyuk;Park, Donghyun;Lee, Ju-Hee;Park, Hyun-Young
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.465-471
    • /
    • 2022
  • Understanding and monitoring virus-mediated infections has gained importance since the global outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Studies of high-throughput omics-based immune profiling of COVID-19 patients can help manage the current pandemic and future virus-mediated pandemics. Although COVID-19 is being studied since past 2 years, detailed mechanisms of the initial induction of dynamic immune responses or the molecular mechanisms that characterize disease progression remains unclear. This study involved comprehensively collected biospecimens and longitudinal multi-omics data of 300 COVID-19 patients and 120 healthy controls, including whole genome sequencing (WGS), single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA(+scTCR/BCR)-seq), bulk BCR and TCR sequencing (bulk TCR/BCR-seq), and cytokine profiling. Clinical data were also collected from hospitalized COVID-19 patients, and HLA typing, laboratory characteristics, and COVID-19 viral genome sequencing were performed during the initial diagnosis. The entire set of biospecimens and multi-omics data generated in this project can be accessed by researchers from the National Biobank of Korea with prior approval. This distribution of large-scale multi-omics data of COVID-19 patients can facilitate the understanding of biological crosstalk involved in COVID-19 infection and contribute to the development of potential methodologies for its diagnosis and treatment.