• Title/Summary/Keyword: Bioaffinity

Search Result 4, Processing Time 0.021 seconds

Label-free Detection of Biomolecular Specific Interaction by Optical Biosensors (광 바이오센서를 이용한 비표지 생계물질들의 특이 상호작용력의 측정)

  • 김의락;최정우
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2002
  • Label-free optical methods for the monitoring of interactions between biological molecules have become increasingly popular within the last decade. A rising number of publications have demonstrated the benefits of direct biomolecular interaction analysis(BIA) for biology and biochemistry, such as antigen-antibody Interactions, receptor-ligand interactions, protein-DNA, DNA- intercalator, and DNA-DNA interactions. This article gives an overview of the historical development, principle and application of label-free optical biosensor to examine the functional characteristics of biospecific interaction, such as kinetics, affinity, and binding position of biomolecular between an immobilized species at the transducer surface and its dissolved binding partner.

A Study on the Drilling Characteristics for Implant Procedure Drill (임플란트 시술용 드릴의 가공 성능 평가에 관한 연구)

  • Lee, Sang-Min;Chae, Seung-Su;Lee, Jae-Kun;Choi, Hwan;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.49-54
    • /
    • 2014
  • Skull Melted 3.2YSZ has good physical properties and does not undergo low temperature degradation. Due to these excellent physical and mechanical properties, Skull Melted 3.2YSZ has been studied for use in dental implants. In this study, a ø2.2mm Initial Twist Drill was made using Skull Melted 3.2YSZ; the drilling characteristics were compared with those of the traditional SUS420J drill. The experimental results indicate that the Skull Melted 3.2YSZ drill requires similar thrust forces and has a slightly higher temperature.

A Study on Surface Modification of Nanorod Electrodes for Highly Sensitive Nano-biosensor (고감도 나노-바이오센서를 위한 나노로드 전극 표면 개질에 관한 연구)

  • Lee, Seung Jun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.185-189
    • /
    • 2016
  • Among many kinds of bioaffinity sensors, the avidin-biotin system has been widely used in a variety of biological applications due to the specific and high affinity interaction of the system. In this work, gold nanorods with high surface area were explored as electrodes in order to amplify the signal response from the avidin-biotin interaction which can be further utilized for avidin-biotin biosensors. Electrochemical performance of electrodes modified with nanorods and functionalized with avidin in response to interactions with biotin at various concentrations using $[Fe(CN)_6]^{3-/4-}$ couple as the redox probe were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A very low biotin concentration of less than 1 ng/mL could be detected using the electrodes modified with nanorods.

Carbon Particle-Doped Polymer Layers on Metals as Chemically and Mechanically Resistant Composite Electrodes for Hot Electron Electrochemistry

  • Habiba, Nur-E;Uddin, Rokon;Salminen, Kalle;Sariola, Veikko;Kulmala, Sakari
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.100-111
    • /
    • 2022
  • This paper presents a simple and inexpensive method to fabricate chemically and mechanically resistant hot electron-emitting composite electrodes on reusable substrates. In this study, the hot electron emitting composite electrodes were manufactured by doping a polymer, nylon 6,6, with few different brands of carbon particles (graphite, carbon black) and by coating metal substrates with the aforementioned composite ink layers with different carbon-polymer mass fractions. The optimal mass fractions in these composite layers allowed to fabricate composite electrodes that can inject hot electrons into aqueous electrolyte solutions and clearly generate hot electron- induced electrochemiluminescence (HECL). An aromatic terbium (III) chelate was used as a probe that is known not to be excited on the basis of traditional electrochemistry but to be efficiently electrically excited in the presence of hydrated electrons and during injection of hot electrons into aqueous solution. Thus, the presence of hot, pre-hydrated or hydrated electrons at the close vicinity of the composite electrode surface were monitored by HECL. The study shows that the extreme pH conditions could not damage the present composite electrodes. These low-cost, simplified and robust composite electrodes thus demonstrate that they can be used in HECL bioaffinity assays and other applications of hot electron electrochemistry.