• Title/Summary/Keyword: Bioactive

Search Result 2,234, Processing Time 0.025 seconds

Analytical Methods and Effects of Bioactive Peptides Derived from Animal Products: A Mini-Review

  • Jae Won Jeong;Seung Yun Lee;Da Young Lee;Jae Hyeon Kim;Seung Hyeon Yun;Juhyun Lee;Ermie Jr. Mariano;Sung Sil Moon;Sun Jin Hur
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.533-550
    • /
    • 2024
  • Peptides with bioactive effects are being researched for various purposes. However, there is a lack of overall research on pork-derived peptides. In this study, we reviewed the process of obtaining bioactive peptides, available analytical methods, and the study of bioactive peptides derived from pork. Pepsin and trypsin, two representative protein digestive enzymes in the body, are hydrolyzed by other cofactors to produce peptides. Bicinchoninic acid assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, chromatography, and in vitro digestion simulation systems are utilized to analyze bioactive peptides for protein digestibility and molecular weight distribution. Pork-derived peptides mainly exhibit antioxidant and antihypertensive activities. The antioxidant activity of bioactive peptides increases the accessibility of amino acid residues by disrupting the three-dimensional structure of proteins, affecting free radical scavenging, reactive oxygen species inactivation, and metal ion chelating. In addition, the antihypertensive activity decreases angiotensin II production by inhibiting angiotensin converting enzyme and suppresses blood pressure by blocking the AT1 receptor. Pork-derived bioactive peptides, primarily obtained using papain and pepsin, exhibit significant antioxidant and antihypertensive activities, with most having low molecular weights below 1 kDa. This study may aid in the future development of bioactive peptides and serve as a valuable reference for pork-derived peptides.

Bioactive Compounds Derived from Marine Bacteria: Anti-cancer Activity

  • Kim, Se-Kwon;Hoang, Van L.T.;Kim, Moon-Moo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.232-242
    • /
    • 2006
  • Bioactive compounds produced by microorganisms have focused on in recent years. In particular, novel compounds showing anti-cancer activity have been isolated from marine microorganisms. In this review, we will discuss on the studies of new bioactive compounds derived from marine bacteria with conjunction to anti-cancer activity. This review will provide an information and source for bioactive compounds showing anti-cancer activity, which were derived from marine bacteria.

  • PDF

Microfailure Degradation Mechanisms and Interfacial Properties of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Implant용 Bioabsorbable 복합재료의 미세파괴 분해메커니즘과 계면물성)

  • 박종만;김대식
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.15-26
    • /
    • 2001
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites fur implant materials were investigated using micromechanical technique and nondestructive acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas these of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. AE amplitude and AE energy of PEA fiber decreased gradually, and their distributions became narrower than those in the initial state with hydrolysis time. In case of bioactive glass fiber, AE amplitude and AE energy in tensile failure were much higher than in compression. In addition, AE parameters at the initial state were much higher than those after degradation under both tensile and compressive tests. In this work, interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF

The Effect of the Mixture of Nonionic Surfactant and Bioactive Agent for Surfactant-enhanced Soil Flushing (SESF) of TCB Contaminated Soil

  • Lee, Dal-Heui;Cho, Heuy Nam;Chung, Sung-Lae
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • The objective of this study was to find the effect of the mixture of the nonionic surfactant and bioactive agent that solubilizes trichlorobenzene (TCB) present as a contaminant for surfactant-enhanced soil flushing (SESF). Three different nonionic surfactants and two different bioactive agents were obtained from four companies. Separate funnel experiments and shaker table agitation / centrifugation experiments were used for the test. Based on the separate funnel experimental results, three suitable mixture agents (APG + OSE, Brij 35 + MOSE, T-Maz 60 + MOSE) were selected. In the shaker table agitation / centrifugation experiments, these three different mixture agents were reduced to one (T-Maz 60 +MOSE). The maximum removal (95%) of TCB was obtained using a mixture of the nonionic surfactant and bioactive agent. Therefore, the used test methods and results can be used for SESF.

Clinical Applications of Bioactive Milk Components: A Review (우유 생리활성 물질의 임상적 적용)

  • Han, Rae Hee;Yoon, Sung Hee;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.167-176
    • /
    • 2019
  • Milk contains essential nutrients and functional compounds, such as calcium, fat-soluble vitamins A, D, E, and K, carotenoids, bioactive peptides, and sphingolipids. The bioactive molecules from milk are not expensive and have an added advantage of being derived from food. Therefore, they are more stable and have a broader spectrum than that of other chemicals. Bioactive milk components are useful for treating non-digestive tract disorders, such as cancer, cognitive decline, and hypertension. However, the clinical application of certain breast milk ingredients is limited due to the lack of a large-scale production technology. Once the scaled-up production of lactoferrin became possible, clinical applications were devised and evaluated. Similarly, human alpha-lactalbumin made lethal to tumor cells (HAMLET) can be produced on a large scale as a recombinant protein in microorganisms or in transgenic cattle using suitable separation systems. HAMLET can be used to treat human skin papilloma and cancer. Studies on breast milk that explored the clinical applications of the bioactive components of breast milk have spurred the development of translational medicine and breast milk-derived therapeutics. Some breast-milk derived therapeutic agents are already available to clinicians. Many components of breast milk have shown efficacy in pre-clinical studies and have valid clinical evaluations.