Glycosylation with Glycosyl *p*-Bromophenyl Phthalates as New Efficient Glycosyl Donors

Soon Young Kwon, Bo-Young Lee, Heung Bae Jeon,* and Kwan Soo Kim*

Center for Bioactive Molecular Hybrids and Department of Chemistry, Yonsei University, Seoul 120-749, Korea *E-mail: kwan@yonsei.ac.kr; hbj@yonsei.ac.kr Received November 25, 2004

Key Words: Glycosyl aryl phthalate, Glycosylation, Glycosyl donor

The development of an efficient and stereoselective glycosylation methodology has been a major concern in synthetic organic chemistry in the past a decade due to the important biological functions of complex oligosaccharides and glycoconjugates.1 Devising new glycosyl donors and developing new activation systems for the existing donors resulted in major advances in this area. For example, several glycosylation methodologies using the efficient glycosyl donors such as thioglycosides,² glycosyl sulfoxides,³ glycals,⁴ glycosyl trichloroacetimidates,⁵ *n*-pentenyl glycosides,⁶ and glycosyl fluorides⁷ have been available. In addition, there have been recent reports regarding the development of glycosylation methods via new glycosyl donors and the application of existing glycosyl donors in novel activation systems.⁸ However, there still remains a need for more efficient and generally applicable new glycosylation methodology.

In our previous endeavors, we reported a novel type of glycosyl donors, the 2'-(benzyloxycarbonyl)benzyl (BCB) glycoside⁹ and the 2'-carboxybenzyl (CB) glycoside **A**, as shown in Figure 1 for the stereoselective β -mannopyranosylation¹⁰ and the 2-deoxyglycosylation.¹¹ We applied this methodology to the synthesis of a trisaccharide¹² and tetrasaccharide.¹³ More recently, we have also reported the synthesis of the glycosyl benzyl phthalate **C** and its use as a new type of glycosyl donor.¹⁴ Although the glycosyl benzyl

phthalate **C** proved to be the efficient glycosyl donor, there still remains a need for improvement. Thus, it is desirable to conduct the glycosylation more efficiently and at lower temperature in order to control the stereochemistry of the product and to keep acid-labile reactants or products intact under the acidic condition resulting from the use of TMSOTf. We envisaged that certain glycosyl aryl phthalates **D** might be more reactive than **C** so that the glycosylation might be conducted at lower temperature. Herein we describe the synthesis of a new type of glycosyl donors, the glycosyl aryl phthalate **D** and report that the glycosylation with glycosyl *p*-bromophenyl phthalates could be conducted under milder condition than that with glycosyl benzyl phthalates.

Results and Discussion

Crystalline aryl hydrogen phthalates (1a-e) were readily prepared in large quantities by treating the inexpensive phthalic anhydride with phenol or *p*-substituted phenols (Scheme 1). Esterification of 2,3,4,6-tetra-*O*-benzyl-Dglucose (2) and the phthalates 1a-d using DCC in the presence of DMAP provided the anomeric mixture of corresponding glucopyranosyl aryl phthalates 3a-d in good yields (Scheme 2).¹⁵ These aryl phthalate glycosyl donors 3a-d were stable enough to be stored at room temperature

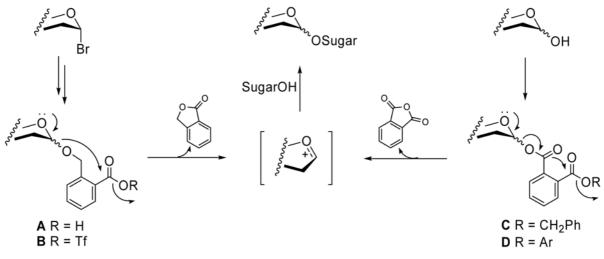
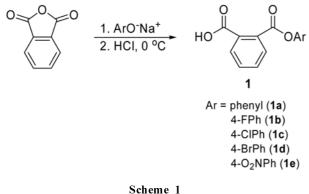
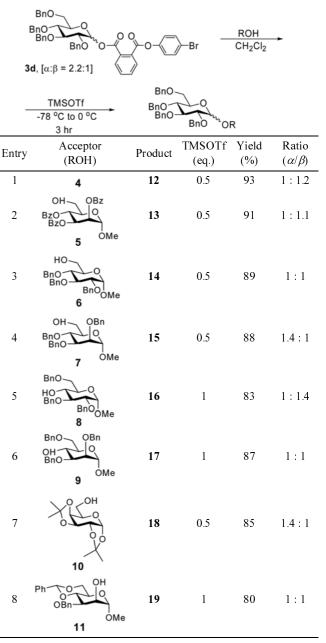



Figure 1

Scheme 1	L
----------	---


for months with no appreciable change. However, 4-nitrophenyl derivative 3e was highly unstable and decomposed during the purification.

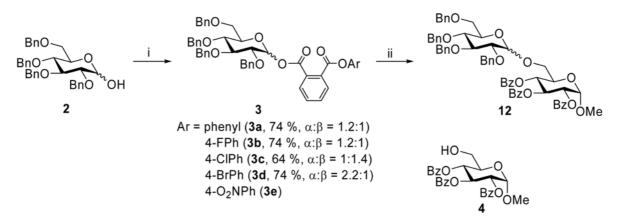
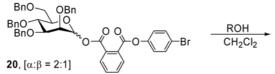
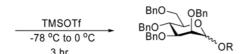

All donors 3a-d were readily activated by TMSOTf in dichloromethane and were coupled with the glycosyl acceptor 4 to give the corresponding disaccharide 12 in excellent yields (Table 1). General procedure involved stirring of a solution of the phthalates 3 (1.0 equiv.), of the acceptor 4 (2.0 equiv.), and of TMSOTf (0.5 equiv.) in dichloromethane, and quenching with aqueous NaHCO₃. The reaction mixture was purified by column chromatography to provide a mixture of α - and β -disaccharides 12 (Scheme 2, all entries in Table 1, and entry 1 in Table 2). Among glycosyl aryl phthalates **3a-d**, 4-bromo substituted donor **3d** showed the highest reactivity.¹⁶ Glycosylation with

Table 1. Glycosylation for 12 with glycosyl aryl phthalates 3 and acceptor 4

Glycosy	Aryl -	Reaction temp. (°C)		Time	Yield	Ratio
donor		Starting	Completion	(h)	(%)	$(\alpha \beta)$
3a	\neg	-10	rt	3 h	91	1.6 : 1
3b	− √ −F	-10	rt	3 h	93	1.4 : 1
3c	- Сі-сі	-20	rt	3 h	88	1.7:1
3d	- Br	-30	0	3 h	93	1:1.2

Table 2. Glycosylation with glucopyranosyl p-bromophenyl phthalate 3d and various glycosyl acceptors


Scheme 2. Reagents and conditions: i, aryl hydrogen phthalate (1), DCC, DMAP (cat.), CH₂Cl₂, 0 °C to rt, 3 hr; ii, 4, TMSOTf, CH₂Cl₂, 3 hr.


Notes

the donor **3d** virtually completed at -30 °C while other donors **3a-c** required -10 or -20 °C although the reaction temperature was raised to room temperature in order to make sure the complete conversion of reactants into products.

Based on these results, we chose the derivative 3d as our lead donor and treated it with various glycosyl acceptors to investigate the general applicability (Table 2). Reaction of the donor 3d with other primary alcohol acceptors 5, 6, 7, and 10 similarly provided disaccharides 13 ($\alpha/\beta = 1:1.1$), **14** ($\alpha/\beta = 1:1$), **15** ($\alpha/\beta = 1.4:1$) and **18** ($\alpha/\beta = 1.4:1$) in 85-91% yields, respectively (entries 2, 3, 4, and 7 in Table 2). The glycosylation of the donor **3d** with secondary alcohol acceptors also proved to be quite efficient. Treating 1.0 equiv. of the donor 3d with 2.0 equiv. of secondary alcohol acceptors 8, 9, and 11 in the presence of 1.0 equiv. of TMSOTf in dichloromethane gave disaccharides 16 (α/β = 1:1.4), 17 ($\alpha/\beta = 1:1$), and 18 ($\alpha/\beta = 1:1$) in 80-87% yields, respectively (entries 5, 6, and 8 in Table 2). These results indicated that glycosyl p-bromophenyl phthalates were more efficient glycosyl donors than glycosyl benzyl phthalates.¹⁴ Additionally, new set of the glycosyl donor **20** was prepared from mannopyranose (Table 3).¹⁷ While the glucopyranosyl donor 3d showed no diastereoselectiviy, the glycosylation with mannopyranosyl donor 20 exhibited α selectivity for both primary or secondary alcohol acceptors. Moderate $(\alpha/\beta = 2:1)$ to high $(\alpha \text{ only}) \alpha$ -selectivity was observed in the reaction of 20 with primary alcohol acceptors (entries 1-4, and 7 in Table 3). On the other hand, only the α -isomers were obtained when the donor 20 was reacted with the secondary alcohol acceptors 8, 9, and 11 to provide exclusively α -disaccharides 25, 26, and 28, respectively (entries 5, 6, and 8 in Table 3).

Table 3. Glycosylation with mannopyranosyl *p*-bromophenyl phthalate **20** and various glycosyl acceptors

	3 nr				
Entry	Acceptor (ROH)	Product	TMSOTf (eq.)	Yield (%)	Ratio (α/β)
1	4	21	0.5	91	α only
2	5	22	0.5	92	lpha only
3	6	23	0.5	89	2:1
4	7	24	0.5	92	2.4:1
5	8	25	1	82	lpha only
6	9	26	1	89	α only
7	10	27	0.5	78	2.6:1
8	11	28	1	84	α only

Bull. Korean Chem. Soc. 2005, Vol. 26, No. 5 817

In conclusion, we have developed a new type of glycosyl donors, glycosyl aryl phthalates, and identified glucopyranosyl *p*-bromophenyl phthalate **3d** and mannopyranosyl *p*-bromophenyl phthalate **20** as the most reactive donors. Since glycosylation with these glycosyl *p*-bromophenyl phthalates could be conducted at lower temperature than that with glycosyl benzyl phthalates, control of stereochemistry in glycosylation might be easier and glycosylation with acidlabile reactants or products would be possible.

Acknowledgements. This work was supported by a grant from the Korea Science and Engineering Foundation through Center for Bioactive Molecular Hybrids (CBMH).

References and Notes

- (a) Varki, A. *Glycobiology* **1993**, *3*, 97. (b) Dwek, R. A. *Chem. Rev.* **1996**, *96*, 683. (c) Bertozzi, C. R.; Kiessling, L. L. *Science* **2001**, *291*, 2357.
- 2. Garegg, P. J. Adv. Carbohydr. Chem. Biochem. 1997, 52, 179.
- Kahne, D.; Walker, S.; Cheng, Y.; Engen, D. V. J. Am. Chem. Soc. 1989, 111, 6881.
- 4. Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. 1996, 35, 1380.
- 5. Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21.
- Fraser-Reid, B.; Madsen, R. In *Preparative Carbohydrate Chemistry*; Hanessian, S., Ed.; Marcel Dekker, Inc.: New York, 1997; p 339.
- 7. Shimizu, M.; Togo, H.; Yokoyama, M. Synthesis 1998, 799.
- For recent examples of new glycosyl donors and activating systems, see: (a) Plante, O. J.; Palmacci, E. R.; Andrade, R. B.; Seeberger, P. H. J. Am. Chem. Soc. 2001, 123, 9545. (b) Hinklin, R. J.; Kiessling, L. L. J. Am. Chem. Soc. 2001, 123, 3379. (c) Davis, B. J.; Ward, S. J.; Rendle, P. M. Chem. Commun. 2001, 189. (d) Petersen, L.; Jensen, K. J. J. Org. Chem. 2001, 66, 6268. (e) Nguyen, H. M.; Chen, Y.; Duron, S. G.; Gin, D. Y. J. Am. Chem. Soc. 2001, 123, 8766. (f) Hadd, M. J.; Gervay, J. Carbohydr. Res. 1999, 320, 61. (g) Crich, D.; Sun, S. J. Am. Chem. Soc. 2001, 123, 9015.
- 9. Kim, K. S.; Lee, M. E.; Cho, J. W. Bull. Korean Chem. Soc. 2004, 25, 139.
- Kim, K. S.; Kim, J. H.; Lee, Y. J.; Lee, Y. J.; Park, J. J. Am. Chem. Soc. 2001, 123, 8477.
- Kim, K. S.; Park, J.; Lee, Y. J.; Seo, Y. S. Angew. Chem., Int. Ed. 2003, 42, 459.
- 12. Kwon, Y. T.; Lee, Y. J.; Lee, K.; Kim, K. S. Org. Lett. 2004, 6, 3901.
- Kim, K. S.; Kang, S. S.; Seo, Y. S.; Kim, H. J.; Lee, Y. J.; Jeong, K.-S. Synlett. 2003, 1311.
- Kim, K. S.; Lee, Y. J.; Kim, H. Y.; Kang, S. S.; Kwon, S. Y. Org. Biomol. Chem. 2004, 2, 2408.
- 15. **3d**: colorless oil ($\alpha/\beta = 2.2 : 1$): R_f = 0.33 (hexane/EtOAc, 4 : 1); ¹H NMR (250 MHz, CDCl₃) δ 3.58-3.87 (m, 5H), 3.91-4.02 (m, 1H), 4.36-4.74 (m, 5H), 4.77-5.01 (m, 3H), 5.88 (d, J = 7.4 Hz, 0.3H, H_{β-1}), 6.56 (d, J = 3.3 Hz, 0.7H, H_{α-1}), 7.10-7.33 (m, 22H), 7.41-7.46 (m, 2H), 7.54-7.62 (m, 2H), 7.78-7.87 (m, 2H); ¹³C NMR (63 MHz, CDCl₃) δ 55.2, 67.7, 68.1, 68.5, 70.1, 73.1, 73.2, 73.4, 73.5, 75.0, 75.4, 75.7, 75.8, 76.7, 78.9, 79.8, 80.8, 81.7, 82.1, 84.8, 91.5, 95.2, 98.2, 119.2, 123.5, 127.7, 127.8, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 129.4, 131.6, 131.7, 131.8, 132.5, 137.6, 137.7, 137.8, 137.9, 138.6, 149.9, 164.9, 165.6; IR (CHCl₃, film) 3063, 3031, 2867, 1744, 1267, 1197 cm⁻¹. Anal. calcd for C₄₈H₄₃BrO₉: C, 68.33; H, 5.14. Found: C, 68.25; H, 5.27.

- 818 Bull. Korean Chem. Soc. 2005, Vol. 26, No. 5
- 16. The reason for the higher reactivity of **3d** over **3a-c** is currently unknown.
- 17. **20**: colorless oil $(\alpha/\beta = 2:1)$: R_f = 0.28 (hexane/EtOAc, 4:1); ¹H NMR (250 MHz, CDCl₃) δ 3.62-3.93 (m, 4H), 4.05-4.20 (m, 2H), 4.27-4.65 (m, 5H), 4.75-4.89 (m, 3H), 5.89 (br s, 0.33H, H_{β-1}), 6.52 (br s, 0.67H, H_{α-1}), 7.03-7.65 (m, 26H), 7.78-7.87 (m, 2H);

¹³C NMR (63 MHz, CDCl₃) δ 68.5, 68.7, 71.5, 71.8, 72.4, 72.8, 73.2, 73.8, 73.9, 74.0, 74.7, 75.1, 76.3, 79.1, 81.7, 93.8, 94.0, 119.0, 119.1, 123.28, 123.32, 127.4, 127.5, 127.7, 127.8, 127.9, 128.0, 128.2, 128.8, 129.0, 129.4, 129.9, 131.3, 131.4, 132.0, 132.2, 132.4, 137.6, 137.8, 137.9, 138.0, 138.1, 149.5, 149.6, 164.9, 165.6, 165.7.