• 제목/요약/키워드: BioH

검색결과 2,925건 처리시간 0.03초

미생물 공법에 의한 매립가스 황화수소 제거 및 바이오황 생산 (Application of the Microbial Process for Hydrogen Sulfide Removal and Bio-Sulfur Production from Landfill Gas)

  • 김영민;송효순;안효성;천승규
    • 신재생에너지
    • /
    • 제16권1호
    • /
    • pp.68-76
    • /
    • 2020
  • Operational testing of the THIOPAQ® facility that removes H2S from landfill gas was performed for 746 days. The average H2S removal efficiency was 99.4%, and the input quantities of air, NaOH, and nutrients per sulfur load were 13.1 ㎥/ton, 1.5 ㎥/ton, and 28.7 L/ton, respectively. The purity of the bio-sulfur produced from the facility was 94.8%, with 3.3% impurities, except for moisture. X-ray photoelectron spectroscopy showed that the compositional contents of amino acids and free amino acids of the bio-sulfur surface were 5,308 and 728 mg/kg, respectively. The mean particle size was 3.41 ㎛, which was much smaller than that of chemical sulfur. Based on these results, a high H2S removal rate of more than 97% is feasible, and high value-added bio-sulfur, which is used as a fungicide because of its hydrophilic characteristics and small size, can be obtained at this facility.

Characterization of Kinetics of Urea Hydrolysis in A Newly Reclaimed Tidal Soils

  • Kim, Hye-Jin;Park, Mi-Suk;Woo, Hyun-Nyung;Kim, Gi-Rim;Chung, Doug-Young
    • 한국토양비료학회지
    • /
    • 제44권1호
    • /
    • pp.84-90
    • /
    • 2011
  • It is imperative to study the hydrolysis of urea in high saline-sodic condition of a newly reclaimed tidal land in order to overcome the problems associated with use of urea fertilizer. The methodology adopted in this study tried to get a convenient way of estimating rate for N transformation needed in N fate and transport studies by reviewing pH and salt contents which can affect the microbial activity which is closely related to the rate of urea hydrolysis. The hydrolysis of urea over time follows first-order kinetics and soil urease activity in reclaimed soils will be represented by Michaelis-Menten-type kinetics. However, high pH and less microorganisms may delay the hydrolysis of urea due to decrease in urease activity with increasing pH. Therefore, the rate of urea hydrolysis should adopt $V_{max}$ referring enzyme activity ($E_0$) accounting for urease concentration which is indicative for urea hydrolysis, especially in a high saline and sodic soils.