• Title/Summary/Keyword: BioH

Search Result 2,943, Processing Time 0.033 seconds

Characteristics of Heavy Metal Releases from the Abandoned Dogog Mine Tailing in Korea (도곡광산 광미의 중금속 용출 특성)

  • Park, Chang-Jin;Kim, Won-Il;Jeong, Goo-Bok;Lee, Jong-Sik;Ryu, Jong-Su;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.316-322
    • /
    • 2006
  • Objective of this research was to assess the release characteristics of metals from the mine tailing to base the prediction of metal load potential from tailing to soils. Water-soluble concentrations of Cd, Cu, Pb and Zn released from mine tailing after 2 hrs were 2.31, 129.38, 17.17, and 287.53 mg/kg, respectively, as compared to 1.6, 128, 108, and 142 mg/kg that were extractable by 0.1 M HCl. Kinetics of metal releases followed the power function model significantly indicating that more of water soluble fractions of those metals released at the initial short time, followed by a slow increase. Concentrations of metals released from tailing by water and 0.1 M HCl were in the orders of Zn > Cu > Pb > Cd. The breakthrough curve from the column experiment showed that concentrations of Cd, Cu, and Zn reached at highest after one pore volume, but that of Pb reached highest after five pore volumes when 0.1 M HCl was used as eluent. The release rate of Cd from mine tailing was the fastest but Pb was the slowest. The cumulative mass of metal released by 0.1 M HCl was in the order of Zn > Cu > Pb > Cd after nine pore volume elution.

Prebiotic Properties of Levan in Rats

  • Jang, Ki-Hyo;Kang, Soon-Ah;Cho, Yun-Hi;Kim, Yun-Young;Lee, Yun-Jung;Hong, Kyung-Hee;Seong, Kyung-Hwa;Kim, So-Hye;Kim, Chul-Ho;Rhee, Sang-Ki;Ha, Sang-Do;Choue, Ryo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.348-353
    • /
    • 2003
  • Generally, two different types of fructose polymer are found in nature. One is inulin, whose fructosyl residues are linked mainly by a ${\beta}-(2,1)-linkage$, while the other is high-molecular-weight levan, whose fructosyl residues are linked mainly by a ${\beta}-(2,6)-linkage$. In contrast to the extensive studies on the prebiotic properties of inulin, there has been no report on the effect of levan on the large bowel microflora in viva. Therefore, to examine whether dietary levan can be used as a prebiotic, Sprague-Dawley male rats were fed one of two diets for 3 weeks: 1) basal diet plus sucrose; 2) basal diet plus 10% (wt/wt) levan. The cecal bowel mass, cecal and colon short-chain fatty acids (SCFAs), pH, and microflora were then compared. The intake of the levan-containing diet significantly increased the total cecal weight and wall weight. The analyses of the SCFAs in the cecal and colonic contents revealed that levan was converted into acetate, butyrate, and lactate, which resulted in acidic conditions. The intake of levan also significantly increased the total number of microorganisms by 5-fold and lactic acid-producing bacteria (LAB) 30-fold in the feces. Accordingly, the current work shows that levan can be used as a prebiotic for stimulating the growth of LAB in an animal model.

N2O and CH4 Emission from Upland Forest Soils using Chamber Methods (플럭스챔버에 의한 N2O와 CH4의 산림에서의 토양배출량 측정연구)

  • Kim, Deug-Soo;Kim, Soyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.789-800
    • /
    • 2013
  • $N_2O$ and $CH_4$, Greenhouse gas emission, Forest soil, Closed chamber technique, Soil uptake $N_2O$ and $CH_4$ are important greenhouse gases (GHG) along with $CO_2$ influencing greatly on climate change. Their soil emission rates are highly affected by bio-geo-chemical processes in C and N through the land-atmosphere interface. The forest ecosystems are generally considered to be net emission for $N_2O$; however, net sinks for $CH_4$ by soil uptake. Soil $N_2O$ and $CH_4$ emissions were measured at Mt. Taewha in Gwangju, Kyeonggi, Korea. Closed chamber technique was used for surface gas emissions from forest soil during period from May to October 2012. Gas emission measurement was conducted mostly on daytime (from 09:00 to 18:00 LST) during field experiment period (total 25 days). The gas samples collected from chamber for $N_2O$ and $CH_4$ were analyzed by gas chromatography. Soil parameters were also measured at the sampling plot. GHG averages emissions during the experimental period were $3.11{\pm}16.26{\mu}g m^{-2}hr^{-1}$ for $N_2O$, $-1.36{\pm}11.3{\mu}gm^{-2}hr^{-1}$ for $CH_4$, respectively. The results indicated that forest soil acted as a source of $N_2O$, while it acted like a sink of $CH_4$ on average. On monthly base, means of $N_2O$ and $CH_4$ flux during May (spring) were $8.38{\pm}48.7{\mu}gm^{-2}hr^{-1}$, and $-3.21{\pm}31.39{\mu}gm^{-2}hr^{-1}$, respectively. During August (summer) both GHG emissions were found to be positive (averages of $2.45{\pm}20.11{\mu}gm^{-2}hr^{-1}$ for $N_2O$ and $1.36{\pm}9.09{\mu}gm^{-2}hr^{-1}$ for $CH_4$); which they were generally released from soil. During September (fall) $N_2O$ and $CH_4$ soil uptakes were observed and their means were $-1.35{\pm}12.78{\mu}gm^{-2}hr^{-1}$ and $-2.56{\pm}11.73{\mu}gm^{-2}hr^{-1}$, respectively. $N_2O$ emission was relatively higher in spring rather than other seasons. This could be due to dry soil condition during spring experimental period. It seems that soil moisture and temperature mostly influence gas production and consumption, and then emission rate in subsoil environment. Other soil parameters like soil pH and chemical composition were also discussed with respect to GHG emissions.

Development of Ethanol Producing Saccharomyces cerevisiae Strain Using High Concentration Galactose (고농도 Galactose로부터 에탄올을 생산하는 Saccharomyces cerevisiae 균주의 육성)

  • Kim, Ju-Hye;Yoon, Min-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • A galactose-fermenting yeasts, Saccharomyces cerevisiae No. 9, was selected by screening their abilities to produce carbon dioxide gas when grown on galactose. The selected strain, No. 9 and the reference strains NRRL Y-1528 which was exceptionally resistant to high concentration of substrate, were acclimated on sugars such as glucose, mannose, and galactose, and then their ethanol productivities were investigated during fermentation on these three carbon sources. Ethanol productivity of the strain No. 9 reached to the maximum levels after 18 h of fermentation and the ethanol yield was from 36 to 38% when presented as $[EtOH]_{max}/[Sugar]_{ini}(g/g)$, regardless of the conditions of acclimation. From the results obtained by acclimation and fermentation, it was concluded that the ethanol yields from galactose were not affected by the sugars acclimated. Improvements of the strain S. cerevisiae No. 9 were attempted to increase the fermentation efficiency and/or ethanol yields on high concentration of substrate by the conventional mutation methods employing methanesulfonic acid, ethyl ester (EMS). Mutants, Mut-5 (SJ1-40), -17 (LK4-25) and -24 (LK2-48) fermented galactose at the concentration of 20% in the levels of higher 39.9~51.6% than the mother strain, No. 9, however, their ethanol yields never exceeded those of the reference strain.

Purification, and Biochemical and Biophysical Characterization of Cellobiohydrolase I from Trichoderma harzianum IOC 3844

  • Colussi, Francieli;Serpa, Viviane;Da Silva Delabona, Priscila;Manzine, Livia Regina;Voltatodio, Maria Luiza;Alves, Renata;Mello, Bruno Luan;Nei, Pereira Jr.;Farinas, Cristiane Sanches;Golubev, Alexander M.;Santos, Maria Auxiliadora Morim;Polikarpov, Igor
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.808-817
    • /
    • 2011
  • Because of its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum has a considerable potential in biomass hydrolysis applications. Trichoderma harzianum cellobiohydrolase I (ThCBHI), an exoglucanase, is an important enzyme in the process of cellulose degradation. Here, we report an easy single-step ion-exchange chromatographic method for purification of ThCBHI and its initial biophysical and biochemical characterization. The ThCBHI produced by induction with microcrystalline cellulose under submerged fermentation was purified on DEAE-Sephadex A-50 media and its identity was confirmed by mass spectrometry. The ThCBHI biochemical characterization showed that the protein has a molecular mass of 66 kDa and pI of 5.23. As confirmed by smallangle X-ray scattering (SAXS), both full-length ThCBHI and its catalytic core domain (CCD) obtained by digestion with papain are monomeric in solution. Secondary structure analysis of ThCBHI by circular dichroism revealed ${\alpha}$- helices and ${\beta}$-strands contents in the 28% and 38% range, respectively. The intrinsic fluorescence emission maximum of 337 nm was accounted for as different degrees of exposure of ThCBHI tryptophan residues to water. Moreover, ThCBHI displayed maximum activity at pH 5.0 and temperature of $50^{\circ}C$ with specific activities against Avicel and p-nitrophenyl-${\beta}$-D-cellobioside of 1.25 U/mg and 1.53 U/mg, respectively.

A Semi-Pilot Test of Bio-barrier for the Removal of Nitrate in Bank Filtrate (강변여과수의 질산성질소 제거를 위한 생물학적 반응벽체의 준파일럿 실험에 관한 연구)

  • Moon, Hee-Sun;Chang, Sun-Woo;Nam, Kyoung-Phile;Kim, Jae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.302-308
    • /
    • 2005
  • Nitrate is one of common contaminants frequently found in the bank filtrate. Biological autotrophic denitrification into permeable reactive barrier(PRB) system to reduce nitrate concentration in bank filtrate was implanted. The objectives of research are to investigate effect of inoculation, to evaluate alternative alkalinity sources, and to determine effect of hydraulic characteristics, such as retention time, flow rate on the performance of semi-pilot PRB system. Semi-pilot scale biological PRB system was installed using elemental sulfur and limestone/oyster shell as reactive materials near Nakdong River in Kyoungnam province, Korea. Nitrate concentration in bank filtrate was reduced by indigenous microorganisms in oyster shell as welt as by inoculating microorganisms isolated from the sludge of an anaerobic digester in a wastewater treatment plant. Oyster shell as well as limestone can be used as an alkalinity source. However, oyster shell resulted in suspended solids of effluent. As the flow rate in the system increased from 66 to 132 mL/min and accordingly the residence time decreased from 15 to 7.5 hours, nitrate concentration in effluent increased and nitrate removal efficiencies decreased from 75 to 58% at the fixed thickness of 80 cm of PRB.

A study on the Determinant Priority of Royalty between Government-funded research centers and Companies who were transferred the technology. ; Focused on the case of 'N' Center. (기술이전 협상에서 기술도입 기업의 기술료 결정 요인 중요도에 관한 연구 ; N 사업단 기술도입 기업 사례를 중심으로)

  • Baek, Jong-il;Hyun, Byung-hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.135-145
    • /
    • 2017
  • The purpose of this study is to present meaningful information and policy implications concerning the determinants of royalties to the government-funded research centers and agencies. These groups are responsible for policies encouraging technology transfer from the public sector to the private sector. To identify key determinants of royalties in technology transfer, this study conducted AHP survey analysis (Survey period: 01/10~31/10, 2016) of 85 companies which were participants of the R&D project "Next Generation BioGreen21" of R.D.A in the "N"center from 2011 to 2015. Research results show that the critical factors include: 1)Technical considerations for determining the profitability of the technologies, 2)The interest and willingness of the management group, 3)Necessity and urgency of technology transfer. These findings suggest three main policy implications. First, the government-funded research centers and agencies should develop technologies that help companies improve their commercialization as well as the profitability in the near future. Second, government-funded research centers and agencies should consider reducing the administrative burden of the royalty payment for private companies. Third, public R&D projects should reflect the proper research schedule for technology development on the basis of the R&D time span of companies which transfer technology.

The Comparison of Sponges and PLGA Scaffolds Impregnated with DBP on Growth Behaviors of Human Intervertebral Disc Cells (DBP 스폰지와 DBP/PLGA 지지체에서의 인간 디스크세포 거동분석 비교)

  • Lee, Seon-Kyoung;Hong, Hee-Kyung;Kim, Su-Jin;Kim, Yong-Ki;Song, Yi-Seul;Ha, Yoon;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.398-404
    • /
    • 2010
  • We fabricated sponge and poly(lactide-co-glycolide)(PLGA) scaffolds impregnated demineralized bone particle(DBP)(DBP/PLGA) and investigated proper condition to proliferation and phenotype maintenance of intervertebral disc(IVD) cells by comparison between DBP/PLGA scaffold and DBP sponge. DBP/PLGA scaffolds were prepared by solvent casting/salt leaching. Human IVD cells were seeded in scaffolds of two types. Cell viability and proliferation according to scaffolds were analyzed by WST assay and SEM. RT-PCR was assessed to measure mRNA expression of aggrecan and type II collagen of human IVD cells. In WST assay results, cell viability in scaffolds impregnated DBP/PLGA scaffold were higher than DBP sponge. We could observe that disc cell mRNA expressed better in DBP/PLGA scaffold than DBP sponge. We concluded that the using of DBP/PLGA in terms of scaffold fabrication for bio-disc with human IVD cells is helpful growth of disc cells maintenance of phenotypes.

Nitrogen Removal Characteristic of Excreta Wastewater Using SBR and MBR Processes (SBR 및 MBR 공정을 이용한 분뇨폐수에서의 질소제거 특성)

  • Jung, Jin-Hee;Yoon, Young-Nae;Lee, Seul-Kee;Han, Young-Rip;Lee, Seung-Chul;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1485-1491
    • /
    • 2015
  • There are two treatment processes that are currently applied to ships are the biological treatment process using the activated sludge and the electrochemical treatment. However, neither of them are able to remove both nitrogen and phosphorus due to their limited ability to remove organic matters, which are main causes of the red tide. This study was conducted to identify the characteristics of nitrogen removal factors from manure wastewater by replacing the final settling tank in SBR (Sequencing Batch Reactor) process and applying immersion type hollow fiber membrane. SBR process is known to have an advantage of the least land requirement in special environment such as in ship and the immersion type hollow fiber membrane is more stable in water quality change. As the result, the average in the cases of DO (Dissolved Oxygen) is 2.9(0. 6~3.9) mg/L which was determined to be the denitrifying microorganism activity in anaerobic conditions. The average in the cases of ORP (Oxidation Reduction Potential) is 98.4~237.3 mV which was determined to be the termination of nitrification since the inflection point was formed on the ORP curve due to decrease in the stirring treatment after the aeration, same as in the cases of DO. Little or no variation in the pH was determined to have positive effect on the nitrification. T-N (Total Nitrigen) removal efficiencies of the finally treated water were 71.4%, 72.3% and 66.5% in relatively average figures, thus was not a distinct prominence. In being applied in ships in the future, the operating conditions and structure improvements are deemed necessary since the MEPC (Marine Environment Protection Committee). 227(64) ship sewage nitrogen is less than the standard of 20 Qi/Qe mg/L or the removal rate of 70%.

Proteome Analysis of Chicken Embryonic Gonads: Identification of Major Proteins from Cultured Gonadal Primordial Germ Cells

  • Lee, Sang-In;Han, Beom-Ku;Park, Sang-Hyun;Kim, Tae-Min;Sin, Sang-Soo;Lee, Young-Mok;Kim, Hee-Bal;Lim, Jeong-Mook;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.66-67
    • /
    • 2005
  • The domestic chicken (Gallus gallus) is an important model for research in developmental biology because its embryonic development occurs in ovo. To examine the mechanism of embryonic germ cell development, we constructed proteome map of gonadal primordial germ cells (gPGC) from chicken embryonic gonads. Embryonic gonads were collected from 500 embryos at 6 day of incubation, and the gPGC were cultured in vitro until colony formed. After 7-10 days in cultured gPGC colonies were separated from gonadal stroma cells (GSCs). Soluble extracts of cultured gPGCs were then fractionated by two-dimensional gel electrophoresis (pH 4-7). A number of protein spots, including those that displayed significant expression levels, were then identified by use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry and LC-MS/MS. Of the 89 gPGC spots examined, 50 yielded mass spectra that matched avian proteins found in on-line databases. Proteome map of thistype will serve as an important reference for germ cell biology and transgenic research.

  • PDF