• Title/Summary/Keyword: BioAggregate

Search Result 43, Processing Time 0.033 seconds

COMPARISON OF SETTING EXPANSION AND TIME OF ORTHOMTA, PROROOT MTA AND PORTLAND CEMENT (OrthoMTA, ProRoot MTA 그리고 Portland cement의 경화 팽창과 경화 시간 비교)

  • Kang, Ji-Ye;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.3
    • /
    • pp.229-236
    • /
    • 2011
  • ProRoot MTA(Dentsply Tulsa, U.S.A) which has similar component with Portland cement has setting expansion character and long setting time. Excessive expansion can cause fracture at the apical portion of the root and decreasing of volume stability. And the long setting time makes additional visits for crown restoration and slow setting process of this material can change physical properties itself. In this study, among requirements of root canal filling material(KS P ISO 6876) which is revised at 2008, we investigated the setting time and setting expansion. Objects are recently developed OrthoMTA(BioMTA, Korea), conventional ProRoot white MTA(Dentsply Tulsa, U.S.A) and White portland cement(Union, Korea). The results in setting expansion, OrthoMTA was $0.08{\pm}0.02%$, ProRoot white MTA and White portland cement were each $0.28{\pm}0.06$, $0.80{\pm}0.25%$(p<0.05). The results in setting time, OrthoMTA, ProRoot white MTA, White portland cement were each $307.78{\pm}3.83$ min, $150.44{\pm}2.35$ min, $235.33{\pm}9.07$ min(p<0.05).

Thermal Characteristics of Nutrient Solution and Root Media in Recycled Soilless Culture Systems (순환식 무토양재배시스템의 양액 및 배지의 온도변화 특성)

  • Son, Jung-Eek;Park, Jong-Seok
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.71-77
    • /
    • 1998
  • The root-zone environment is an important factor to the plant growth and it is closely related to the thermal characteristics of the root media. In this study thermal characteristics of root media with ambient environmental conditions were analyzed. The temperatures of nutrient solution as well as inside air of culture bed were measured in Nutrient Film Technique(NFT) and Deep Flow Technique(DFT) systems, and also the temperatures of root media measured in aggregate culture systems , The temperature of nutrient solution of NFT system with as low as 3$\ell$/min of flow rate was 3$^{\circ}C$ higher than that with 5 $\ell$/min of flow rate in the daytime, and the temperature of inside air was 2$^{\circ}C$ higher at night. And the temperature of nutrient solution of DFT system with as low as 0.8 cm of water level was 1-2$^{\circ}C$ higher than that with 1 8 cm in the daytime, and the temperature of inside air was almost same at night. The root-zone temperatures in the perlite and rockwool granulate systems with film mulching were 3$^{\circ}C$ higher than those without film mulching in the daytime. However, the rockwool slab system with film mulching showed the same trend as rockwool granulate system, but relatively higher temperature than any other medium because of the exposure of media surface to the ambient air. Additionally the temperature below the plant was measured 3$^{\circ}C$ lower than that between plants.

  • PDF

Characteristics of Environment-Friendly Porous Polymer Concrete for Permeable Pavement

  • Kim, Young-Ik;Sung-Chan, Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.7
    • /
    • pp.25-33
    • /
    • 2005
  • This study was performed to develop environment-friendly porous polymer concrete utilizing recycled aggregates [RPPC] for permeable pavement of uniform quality with high permeability and flexural strength as well as excellent freezing and thawing resistance. The void ratios of RPPC are in the range of 15$\sim$$24\%$, showing the tendency that it is reduced to a great extent as the mixing ratio of the binder increases. The compressive and flexural strength of RPPC are in the range of 19$\sim$26 MPa and 6.2$\sim$7.4 MPa, respectively. Also, it shows a tendency to increase as the mixing ratio of the binder and filler increases. The permeability coefficients of RPPC are in the range of $6.3\times$$10_{-1}$$\sim$$1.5\times$$10_{-2}$cm/s. The flexural loads of RPPC are in the range of 18$\sim$32 KN. The weight reduction ratios obtained from the test for freezing and thawing resistance are in the range of 1.1$\sim$$2.4\%$ after 300 cycles of repeated freezing and thawing of the specimen for all mixes. The relative compressive strengths of RPPC after 300 cycles of freezing and thawing against the compressive strength before freezing and thawing test are in the range of 89$\sim$$96\%$.

Hydration, Strength and pH Properties of Porous Concrete Using Rice Husk Ash

  • Kim, Young-Ik;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.51-60
    • /
    • 2007
  • This study was performed to evaluate void ratio, compressive and flexural strengths, and pH properties according to the content ratio of rice husk ash, aggregate size, and neutral treatment time of porous concrete with content of rice husk ash produced as an agricultural by-product. The SEM results for cement mortar with a 5% rice husk ash for the weight of cement formed more C-S-H hydrates due to the $SiO_2$ of rice husk ash. In the XRD test, cement mortar with a 5% rice husk ash for the weight of cement registered a higher peak point of approximately $2{\theta}=20{\sim}25^{\circ}$ compared to cement mortar without rice husk ash. According to the results of the XRD and SEM tests, the $SiO_2$ that was a major chemical element of rice husk ash generated a large amount of calcium hydroxide in the early stage of the hydration process of cement leading to the formation of ettringite. The void ratio of porous concrete with rice husk ash decreased with increasing content ratio of rice husk ash. In addition, the void ratio of porous concrete with rice husk ash decreased compared to porous concrete without rice husk ash. The compressive and flexural strength of porous concrete with a 5% and 10% content ratio of rice husk ash slightly increased compared to concrete without rice husk ash. The pH value of porous concrete rapidly decreased immediately after neutral treatment. Then, it gradually increased and decreased again after 14 days. However, the pH value was nearly the same regardless of neutral treatment time in 28 curing days. Also, for neutral treatment, the pH value of porous concrete showed appropriate pH levels (less than 9.5) in all mixtures for planting at 28 curing days.

Characteristics of Schizandra chinensis Baillon Orchard Soils Located in Jangsu-gun, Jeollabuk-do (전라북도 장수군 오미자 재배과원 토양 특성)

  • Cho, Jae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.478-483
    • /
    • 2010
  • This study was conducted to investigate the physico-chemical properties of Schizandra chinensis Baillon orchard soils located in Jangsu-gun, Jeollabuk-do. Surface (0 to 10 cm) soils were collected from 200 experimental sites located at Jangsu-eup (53 site), Gyenam-myeon (31), Chunchun-myeon (73), Janggye-myeon (12), Bunyam-myeon (31). The soil texture was mostly loamy sand, and the mean values of degree of soil aggregate and soil porosity were 33.1 and 59.9%, respectively. The pH, EC, total-N, available-P, soil organic matter, and cation exchange capacity of the soils were $5.51{\pm}0.54$, $290{\pm}139{\mu}S\;cm^{-1}$, $946.3{\pm}65.5mg\;kg^{-1}$, $319.6{\pm}29.2mg\;kg^{-1}$, $29.0{\pm}13.9g\;kg^{-1}$ and $4.11{\pm}0.34cmol_c\;kg^{-1}$, respectively. The concentrations of Pb, Cd, Cu and Zn were $3.48{\pm}0.55$, $0.09{\pm}0.04$, $6.90{\pm}0.91$ and $97.7{\pm}42.2mg\;kg^{-1}$, respectively. The presented data can be utilized in better managing Schizandra chinensis Baillon orchard soils in the studied areas.

In vitro cytotoxicity of four calcium silicate-based endodontic cements on human monocytes, a colorimetric MTT assay

  • Khedmat, Sedigheh;Dehghan, Somayyeh;Hadjati, Jamshid;Masoumi, Farimah;Nekoofar, Mohammad Hossein;Dummer, Paul Michael Howell
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.149-154
    • /
    • 2014
  • Objectives: This study was performed to evaluate the cytotoxicity of four calcium silicate-based endodontic cements at different storage times after mixing. Materials and Methods: Capillary tubes were filled with Biodentine (Septodont), Calcium Enriched Mixture (CEM cement, BioniqueDent), Tech Biosealer Endo (Tech Biosealer) and ProRoot MTA (Dentsply Tulsa Dental). Empty tubes and tubes containing Dycal were used as negative and positive control groups respectively. Filled capillary tubes were kept in 0.2 mL microtubes and incubated at $37^{\circ}C$. Each material was divided into 3 groups for testing at intervals of 24 hr, 7 day and 28 day after mixing. Human monocytes were isolated from peripheral blood mononuclear cells and cocultered with 24 hr, 7 day and 28 day samples of different materials for 24 and 48 hr. Cell viability was evaluated using an MTT assay. Results: In all groups, the viability of monocytes significantly improved with increasing storage time regardless of the incubation time (p < 0.001). After 24 hr of incubation, there was no significant difference between the materials regarding monocyte viability. However, at 48 hr of incubation, ProRoot MTA and Biodentine were less cytotoxic than CEM cement and Biosealer (p < 0.01). Conclusions: Biodentine and ProRoot MTA had similar biocompatibility. Mixing ProRoot MTA with PBS in place of distilled water had no effect on its biocompatibility. Biosealer and CEM cement after 48 hr of incubation were significantly more cytotoxic to on monocyte cells compared to ProRoot MTA and Biodentine.

A Study to Define Area of Concern for Potential Soil Loss in Geumgang Watershed by KORSLE-based GIS model (한국형 토양유실공식의 GIS 기반 모형에 의한 금강 유역에 대한 토양유실 우심지역 선정에 관한 연구)

  • Kim, Jonggun;Yang, JaeE;Lim, Kyoung Jae;Kim, Sung Chul;Lee, Giha;Hwang, Sangil;Yu, Nayoung;Park, Youn Shik
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.29-36
    • /
    • 2017
  • Universal soil loss equation (USLE) has been frequently employed to estimate potential soil loss in land since it was developed based on the statewide data measured and collected in the United States. The equation is an empirical model mainly used for U.S. soil, thus it has been recently modified to reflect Korean soil conditions and named as Korean Soil Loss Equation (KORSLE). The modified equation was implemented in ArcGIS software, and used for estimation of potential soil loss from 2003 to 2016 in the thirty-eight Water Protection Districts. Five out of the thirty-eight districts were identified as the area of potential soil erosion most severly. In those five districts, potential soil erosion were estimated to be more than 50 Mg/ha/year that requires site investigation under supervision of the Korean Ministry of Environment. Distinctive site characteristics were found in the potential soil loss estimation such that the districts of low potential soil loss had low five factors in the aggregate. However, if one of more factors are dominantly large, the potential soil loss significantly increased. This study provides a useful tool to identify the potential areas for soil erosion and the important factors that play an important role in the estimation process.

Effects of the exposure site on histological pulpal responses after direct capping with 2 calcium-silicate based cements in a rat model

  • Trongkij, Panruethai;Sutimuntanakul, Supachai;Lapthanasupkul, Puangwan;Chaimanakarn, Chitpol;Wong, Rebecca;Banomyong, Danuchit
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.36.1-36.12
    • /
    • 2018
  • Objectives: Direct pulp capping is a treatment for mechanically exposed pulp in which a biocompatible capping material is used to preserve pulpal vitality. Biocompatibility tests in animal studies have used a variety of experimental protocols, particularly with regard to the exposure site. In this study, pulp exposure on the occlusal and mesial surfaces of molar teeth was investigated in a rat model. Materials and Methods: A total of 58 maxillary first molars of Wistar rats were used. Forty molars were mechanically exposed and randomly assigned according to 3 factors: 1) the exposure site (occlusal or mesial), 2) the pulp-capping material (ProRoot White MTA or Bio-MA), and 3) 2 follow-up periods (1 day or 7 days) (n = 5 each). The pulp of 6 intact molars served as negative controls. The pulp of 12 molars was exposed without a capping material (n = 3 per exposure site for each period) and served as positive controls. Inflammatory cell infiltration and reparative dentin formation were histologically evaluated at 1 and 7 days using grading scores. Results: At 1 day, localized mild inflammation was detected in most teeth in all experimental groups. At 7 days, continuous/discontinuous calcified bridges were formed at exposure sites with no or few inflammatory cells. No significant differences in pulpal response according to the exposure site or calcium-silicate cement were observed. Conclusions: The location of the exposure site had no effect on rat pulpal healing. However, mesial exposures could be performed easily, with more consistent results. The pulpal responses were not significantly different between the 2 capping materials.

Effects of different calcium-silicate based materials on fracture resistance of immature permanent teeth with replacement root resorption and osteoclastogenesis

  • Gabriela Leite de Souza;Gabrielle Alves Nunes Freitas;Maria Tereza Hordones Ribeiro;Nelly Xiomara Alvarado Lemus;Carlos Jose Soares;Camilla Christian Gomes Moura
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.21.1-21.15
    • /
    • 2023
  • Objectives: This study evaluated the effects of Biodentine (BD), Bio-C Repair (BCR), and mineral trioxide aggregate (MTA) plug on the fracture resistance of simulated immature teeth with replacement root resorption (RRR) and in vitro-induced osteoclastogenesis. Materials and Methods: Sixty bovine incisors simulating immature teeth and RRR were divided into 5 groups: BD and BCR groups, with samples completely filled with the respective materials; MTA group, which utilized a 3-mm apical MTA plug; RRR group, which received no root canal filling; and normal periodontal ligament (PL) group, which had no RRR and no root canal filling. All the teeth underwent cycling loading, and compression strength testing was performed using a universal testing machine. RAW 264.7 macrophages were treated with 1:16 extracts of BD, BCR, and MTA containing receptor activator of nuclear factor-kappa B ligand (RANKL) for 5 days. RANKL-induced osteoclast differentiation was assessed by staining with tartrate-resistant acid phosphatase. The fracture load and osteoclast number were analyzed using 1-way ANOVA and Tukey's test (α = 0.05). Results: No significant difference in fracture resistance was observed among the groups (p > 0.05). All materials similarly inhibited osteoclastogenesis (p > 0.05), except for BCR, which led to a lower percentage of osteoclasts than did MTA (p < 0.0001). Conclusions: The treatment options for non-vital immature teeth with RRR did not strengthen the teeth and promoted a similar resistance to fractures in all cases. BD, MTA, and BCR showed inhibitory effects on osteoclast differentiation, with BCR yielding improved results compared to the other materials.

Effect of acidic solutions on the microhardness of dentin and set OrthoMTA and their cytotoxicity on murine macrophage

  • Oh, Soram;Perinpanayagam, Hiran;Lee, Yoon;Kum, Jae-Won;Yoo, Yeon-Jee;Lim, Sang-Min;Chang, Seok Woo;Shon, Won-Jun;Lee, Woocheol;Baek, Seung-Ho;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.12-21
    • /
    • 2016
  • Objectives: To evaluate the effects of three acids on the microhardness of set mineral trioxide aggregate (MTA) and root dentin, and cytotoxicity on murine macrophage. Materials and Methods: OrthoMTA (BioMTA) was mixed and packed into the human root dentin blocks of 1.5 mm diameter and 5 mm height. Four groups, each of ten roots, were exposed to 10% citric acid (CA), 5% glycolic acid (GA), 17% ethylenediaminetetraacetic acid (EDTA), and saline for five minutes after setting of the OrthoMTA. Vickers surface microhardness of set MTA and dentin was measured before and after exposure to solutions, and compared between groups using one-way ANOVA with Tukey test. The microhardness value of each group was analyzed using student t test. Acid-treated OrthoMTA and dentin was examined by scanning electron microscope (SEM). Cell viability of tested solutions was assessed using WST-8 assay and murine macrophage. Results: Three test solutions reduced microhardness of dentin. 17% EDTA demonstrated severe dentinal erosion, significantly reduced the dentinal microhardness compared to 10% CA (p = 0.034) or 5% GA (p = 0.006). 10% CA or 5% GA significantly reduced the surface microhardness of set MTA compared to 17% EDTA and saline (p < 0.001). Acid-treated OrthoMTA demonstrated microporous structure with destruction of globular crystal. EDTA exhibited significantly more cellular toxicity than the other acidic solutions at diluted concentrations (0.2, 0.5, 1.0%). Conclusions: Tested acidic solutions reduced microhardness of root dentin. Five minute's application of 10% CA and 5% GA significantly reduced the microhardness of set OrthoMTA with lower cellular cytotoxicity compared to 17% EDTA.