• 제목/요약/키워드: Bio-solar energy

검색결과 97건 처리시간 0.026초

온실 난방을 위한 모세관형 태양열 집열기의 성능에 미치는 유량의 효과에 관한 연구 (The Effects of Water Flow Rates on the Performance of a Capillary Tube Solar Collector for Greenhouse Heating)

  • 유영선;장유섭;홍성기;윤진하;정두호;강영덕
    • 생물환경조절학회지
    • /
    • 제5권1호
    • /
    • pp.57-64
    • /
    • 1996
  • To use effectively the solar energy in greenhouse heating, a high performance solar collector should be developed. And then the size of the solar collector and thermal storage tank should be determined through the calculation of heating load. The solar collector must be set in the optimum tilt angle and direction to take daily solar radiation maximally, and the flow rate of heat transfer fluid through the solar collector should be kept in the optimum range. In this research, the performance tests of a capillary tube solar collector were performed to determine the optimum water flow rate and the results summarized as follows. 1. The regressive equations for efficiency estimations of the capillary tube solar collector in the open loop were modeled in the water flow rate of 700-l,000 $\ell$/hr. 2. The optimum water flow rate of the solar collector was estimated by the second order polynomial regression and the maximum efficiency was 80% at the water flow rate of 850 $\ell$/hr. 3. The solar thermal storage system consisted of a capillary tube solar collector and a water storage tank was tested at the water flow rate of 850 $\ell$/hr in the closed loop, and obtained the solar thermal storage efficiency of 55.2%. 4. As the capillary tube solar collector engaged in this experiment was made of non-corrosive polyolefin tubes, its weight was as light as 1/30 of the flat plate solar collector made of copper tubes. Therefore it was considered to be suitable for the greenhouse heating system.

  • PDF

계절적 변화에 따른 $TiO_2$ 염료감응형 태양전지의 발전 성능 분석 (Performance Analysis of the $TiO_2$ Dye-Sensitized Solar Cell according to Seasonal Changes)

  • 문병은;최은규;김종구;유영선;윤용철;김현태
    • 생물환경조절학회지
    • /
    • 제23권3호
    • /
    • pp.221-228
    • /
    • 2014
  • 본 연구는 염료감응형 태양전지를 이용하여 시간에 따른 일사량과 그에 따른 전력량의 분석을 통해 계절적 변화에 따른 온실 적용 염료감응형 태양전지의 효율에 관한 기초 자료 수집 및 분석을 목표로 하였다. 경상대학교 소재 온실 근처(위도 $35^{\circ}$ 9' 9.20" N, 경도 $128^{\circ}$ 5' 44.90" E, 고도 52m)에 태양전지 어레이를 설치, 2012년 8월, 10월, 11월, 2013년 2월 약 네 달 동안 태양전지가 받는 일사량과 그에 따른 전력량을 측정 및 비교, 분석하였다. 10월의 태양전지 패널 면적에 따른 일사량이 약 1,013.03MJ, 발생된 전력량은 약 4.87kWh로 네 달 중 가장 높게 측정되었고, 11월의 패널 면적에 따른 일사량이 약 755.25MJ, 발생 전력량은 약 3.34kWh로 가장 낮게 측정되었다. 염료감응형 태양전지의 평균 효율의 경우 8월 한 달간, 약 3.12%로 측정되었고, 10월 2.60%, 11월 2.39%, 2월 2.23%로 각각 측정되었다. 본 연구를 통해, 향후 염료감응형 태양전지의 온실 등 농업분야 적용 시 기초자료로 활용 할 수 있을 것으로 기대된다.

21세기의 에너지에 관한 고찰 (Review of the 21th Energy)

  • 이현화
    • 기술사
    • /
    • 제39권5호
    • /
    • pp.20-24
    • /
    • 2006
  • The energy of 97% consumed by our country depends on it's import from foreign market. This article covers hydrogen, fuel-cell, coal liquefaction gasification energy, and solar, wind, photovoltaic, hydro power, ocean, waste, geothermal, bio energy that is renewable energy, and so on, which are new-generation energy sources, increasing the concern on new & renewable source of enenrgy in future.

  • PDF

해양조류로부터 바이오에너지 생산 : 현황 및 전망 (Production of Bio-energy from Marine Algae: Status and Perspectives)

  • 박재일;우희철;이재화
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.833-844
    • /
    • 2008
  • 바이오에너지는 화석연료의 소비를 감소시키는 기회를 제공한다. 태양, 바람, 수력발전 및 지열, 그리고 바이오매스 자원으로부터 생성된 에너지는 재생이 가능하다. 대부분의 바이오에너지들은 태양으로부터 직 간접적으로 생산되기 때문에 화석연료와 달리 신재생에너지의 충분한 공급이 가능하다. 또한 바이오에너지의 이용은 환경적인 측면 뿐 아니라 정치, 경제적으로 이익을 제공한다. 바이오에너지는 이산화탄소의 순증가가 없고 무공해의 에너지 형태를 제공하는 해양 자원으로부터 생산 될 수 있다. 본 총설에서는 지구의 약 75%가 바다로 이루어져 있음을 고려해 볼 때 바이오에너지 생산을 위한 해양 바이오매스의 잠재력에 대해 검토한다.

수송용 바이오에너지 개발과 미래 (Development of Transportation Bio-energy and Its Future)

  • 정재훈;권기석;장한수
    • 한국미생물·생명공학회지
    • /
    • 제36권1호
    • /
    • pp.1-5
    • /
    • 2008
  • Negative environmental consequences of fossil fuels and the concerns about their soaring prices have spurred the search for alternative energy sources. While other alternative energies-like solar, wind, geothermal, hydroelectric, and tidal-offer viable options for electricity generation, around 40% of total energy consumption requires liquid fuels like gasoline or diesel fuel. This is where bio-energy/biofuels is especially attractive, where they can serve as a practical alternative to oil. The production of liquid biofuels for transportation will depend upon a stable supply of large amount of inexpensive cellulosic biomass obtained on a sustainable basis. This paper reviewed development status of transportation bio-energy for vehicles, technical barriers to the production of cellulosic ethanol, and the global future of bio-diesel and ethanol production.

바이오에너지 개발용 스위치그라스의 조직배양 및 형질전환 최근 연구동향 (Recent advances in tissue culture and genetic transformation system of switchgrass as biomass crop)

  • 이상일;임성수;노희선;김종보
    • Journal of Plant Biotechnology
    • /
    • 제40권4호
    • /
    • pp.185-191
    • /
    • 2013
  • Over the past decades, carbon dioxide concentration of the atmosphere of the world has increased significantly, and thereby the greenhouse effect has become a social issue. To solve this problem, new renewable energy sources including solar, hydrogen, geothermal, wind and bio-energy are suggested as alternatives. Among these new energy sources, bio-energy crops are widely introduced and under rapid progress. For example, corn and oilseed rape plants are used for the production of bio-ethanol and bio-diesel, respectively. However, grain prices has increased severely because of the use of corn for bio-ethanol production. Therefore, non-edible switchgrass draws attention as an alternative source for bio-ethanol production in USA. This review describes the shortage of fossil energy and an importance of switchgrass as a bio-energy crop. Also, some characteristics of its major cultivars are introduced including growth habit, total output of biomass yields. Furthermore, biotechnological approaches have been conducted to improve the productivity of switchgrass using tissue culture and genetic transformation.

바이오매스 자원 잠재량 산정 (Estimation of Biomass Resources Potential)

  • 이준표;박순철
    • 한국태양에너지학회 논문집
    • /
    • 제36권1호
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.

전원장치로 태양광을 이용하는 봉독 채집기에 관한 실험적 연구 (An Experimental Study on the Bee Venom Collector Using the Photovoltaic System)

  • 조남철;이채문;김철구
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.122-127
    • /
    • 2011
  • A bee venom is very useful and expensive medical resource. A bee venom collector has some difficulties and inconveniences because of its complex component. This is used normal battery as an electric power. However, using the solar cell of the bee venom collector reduces economic burden and guarantees high efficiency. We have performed comparative experiment between the bee venom collector to use battery and the one to use solar cell(polycrystalline silicon) by collecting the bee venom simultaneously. At the same electricity, the electric frequency(AC),312 Hz is more superior than 450Hz. This paper verified through the experiments that the bee venom collector to adopt solar cell is more effective than normal collector.

바이오매스 기반 전기에너지 생산기술 동향 분석 (Electrical Energy Production Using Biomass)

  • 이종서;한상수;김도연;김주현;박상진
    • 신재생에너지
    • /
    • 제19권1호
    • /
    • pp.12-21
    • /
    • 2023
  • Governments and global companies are working towards using renewable sources of energy, such as solar, wind, and biomass, to reduce dependency on fossil fuels. In the defense sector, the new strategy seeks to increase the sustainable use of renewable energy sources to improve energy security and reduce military transportation. Renewable energy technologies are affected by factors such as climate, resources, and policy environments. Therefore, governments and global companies need to carefully select the optimal renewable energy sources and deployment strategies. Biomass is a promising energy source owing to its high energy density and ease of collection and harvesting. Many techniques have been developed to convert the biomass into electrical energy. Recently, diverse types of fuel cells have been suggested that can directly convert the chemical energy of biomass into electrical energy. The recently developed biomass flow fuel cell has significantly enhanced the power density several hundred times, reaching to ~100 mW/cm2. In this review, we explore various strategies for producing electrical energy from biomass using modern methods, and discuss the challenges and potential prospects of this method.

외피의 Passive Design 요소와 신재생에너지를 적용한 생물안전 밀폐시설의 에너지 시스템 개선방안 연구 (A Study on the Energy Improvement Plan of using Passive Design with Exterior Envelopes and Renewable Energy for Bio Safety Labotratory)

  • 황지현;범도;홍진관
    • 설비공학논문집
    • /
    • 제26권10호
    • /
    • pp.491-496
    • /
    • 2014
  • In general, the entire air supply of a bio-safety laboratory (BSL) should be exhausted on the outside to ensure bio-safety, and the air conditioning system should always be operated to maintain a difference in the room pressure. As a result, the annual energy consumption of such a building is approximately five or ten times higher than that of an office building of the same magnitude. Thus, this study applies an actual operating system that targets BSL. The energy consumption is analyzed using the Energy Plus V8.0 program (an energy analysis program), and five kinds of cases that depend on the energy consumption of the basic BSL system are also analyzed. As a result, the energy consumption in Case 1 (basic system) is of 324.95 GJ. When the basic system of Case 1 is compared to that in Case 2 (basic system+passive design with exterior envelopes), an annual energy savings of is 6.9% is achieved. For Case 3 (basic system+Photovoltaic, PV) 12.7% is achieved, and for Case 4 (Solar Geothermal Hybrid System of renewable energy, SGHS) 49.5% is achieved. If a passive design with exterior envelopes and renewable energy system (PV+SGHS) is combined, as in Case 5, the energy consumption would be 118.15 GJ. Therefore, when this last system is compared to a basic system, the passive design with exterior envelopes and renewable energy system (PV+SGHS) can reduce energy consumption by 63.6%.