• Title/Summary/Keyword: Bio-signal measurement system

Search Result 96, Processing Time 0.031 seconds

Hypertension Monitoring and Notification Service based on Context Information (상황정보 기반의 고혈압 모니터링 및 알림 서비스)

  • Lee, Young-Ho;Kim, Jong-Hun;Shin, Da-Hye;Jung, Eun-Young;Park, Dong-Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.57-66
    • /
    • 2011
  • In recent years, health management services have been increased according to the increase in interests on health and the development of information technology (IT) based on increases in advanced ages and chronic disease patients. Thus, it requires the monitoring of health conditions and the specialized healthcare services not only in a hospital but also their own home. This study provides the specific notification services related to the context information based on users' bio signal data and the notification services of specific patients and attempts to develop a hypertension monitoring system and a notification service system according to indexes. Because this system considers the context of users by differing it from the conventional monitoring services, it makes possible to obtain more exact measurement values. In addition, it is able to reduce certain health risks through managing specific patients and based on living indexes. Also, it can provide more customized services to users due to the exact and finely classified services.

Development of an Eye Patch-Type Biosignal Measuring Device to Measure Sleep Quality (수면의 질을 측정하기 위한 안대형 생체신호 측정기기 개발)

  • Changsun Ahn;Jaekwan Lim;Bongsu Jung;Youngjoo Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.5
    • /
    • pp.171-180
    • /
    • 2023
  • The three major sleep disorders in Korea are snoring, sleep apnea, and insomnia. Lack of sleep is the root of all diseases. Some of the most serious potential problems associated with sleep deprivation are cardiovascular problems, cognitive impairment, obesity, diabetes, colitis, prostate cancer, etc. To solve these problems, the Korean government provided low-cost national health insurance benefits for polysomnography tests in July 2018. However, insomnia patients still have problems getting treated in terms of time, space, and economic perspectives. Therefore, it would be better for insomnia patients to be allowed to test at home. The measuring device can measure six biosignals (eye movement, tossing and turning, body temperature, oxygen saturation, heart rate, and audio). A gyroscope sensor (MPU9250, InvenSense, USA) was used for eye movement, tossing, and turning. The input range of the sensor was in 258°/sec to 460°/sec, and the data range was in the input range. Body temperature, oxygen saturation range, and heart rate were measured by a sensor (MAX30102, Analog Devices, USA). The body temperature was measured in 30 ℃ to 45 ℃, and the oxygen saturation range was 0% for the unused state and 20 % to 90 % for the used state. The heart rate measurement range was in 40 bpm to 180 bpm. The measurement of audio signal was performed by an audio sensor (AMM2742-T-R, PUIaudio, USA). The was -42 dB ±1 dB frequency range was 20 Hz to 20 kHz. The measured data was successfully received in wireless network conditions. The system configuration was consisted of a PC and a mobile app for bio-signal measurement and data collection. The measured data was collected by mobile phones and desktops. The data collected can be used as preliminary data to determine the stage of sleep and perform the screening function for sleep induction and sleep disturbances. In the future, this convenient sleep measurement device could be beneficial for treating insomnia.

Design of an Efficient Electrocardiogram Measurement System based on Bluetooth Network using Sensor Network (Bluetooth기반의 센서네트워크를 이용한 효율적인 심전도 측정시스템 설계)

  • Kim, Sun-Jae;Oh, Won-Wook;Lee, Chang-Soo;Min, Byoung-Muk;Oh, Hae-Seok
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.699-706
    • /
    • 2009
  • The convergence tendency accelerates the realization of the ubiquitous healthcare (u-Healthcare) between the technology including the power generaation and IT-BT-NT of the ubiquitous computing technology. By rapidly analyzing a large amount of collected from the sensor network with processing and delivering to the medical team an u-Healthcare can provide a patient for an inappropriate regardless of the time and place. As to the existing u-Healthcare, since the sensor node all transmitted collected data by using with the Zigbee protocol the processing burden of the base node was big and there was many communication frequency of the sensor node. In this paper, the u-Healthcare system in which it can efficiently apply to mobile apparatuses it provided the transfer rate in which it is superior to the bio-signal delivery where there are the life and direct relation which by using the Bluetooth instead of the Zigbee protocol and in which it is variously used in the ubiquitous environment was designed. Moreover, by applying the EEF(Embedded Event Filtering) technique in which data in which it includes in the event defined in advance selected and it transmits with the base node, the communication frequency and were reduced. We confirmed to be the system in which it is efficient through the simulation result than the existing Electrocardiogram Measurement system.

A Study of a Module of Wrist Direction Recognition using EMG Signals (근전도를 이용한 손목방향인식 모듈에 관한 연구)

  • Lee, C.H.;Kang, S.I.;Bae, S.H.;Kwon, J.W.;LEE, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 2013
  • As it is changing into aging society, rehabilitation, welfare and sports industry markets are being expanded fast. Especially, the field of vital signals interface to control welfare instruments like wheelchair, rehabilitation ones like an artificial arm and leg and general electronic ones is a new technology field in the future. Also, this technology can help not only the handicapped, the old and the weak and the rehabilitation patients but also the general public in various application field. The commercial bio-signal measurement instruments and interface systems are complicated, expensive and large-scaled. So, there are a lot of limitations for using in real life with ease. this thesis proposes a wireless transmission interface system that uses EMG(electromyogram) signals and a control module to manipulate hardware systems with portable size. We have designed a hardware module that receives the EMG signals occurring at the time of wrist movement and eliminated noises with filter and amplified the signals effectively. DSP(Digital Signal Processor) chip of TMS320F2808 which was supplied from TI company was used for converting into digital signals from measured EMG signals and digital filtering. We also have used PCA(Principal Component Analysis) technique and classified into four motions which have right, left, up and down direction. This data was transmitted by wireless module in order to display at PC monitor. As a result, the developed system obtains recognition success ratio above 85% for four different motions. If the recognition ratio will be increased with more experiments. this implemented system using EMG wrist direction signals could be used to control various hardware systems.

  • PDF

A Study on Selective Metal Ion Sensing Membrane for Bio Environment Measurement (바이오 환경측정용 선택적 금속이온 감지 막의 특성 연구)

  • Park, Hyung-Jun;Jang, Gab-Soo;Kim, In-Su
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1062-1067
    • /
    • 2018
  • In this study, the research processed with a chemical sensor for measuring trace amount of heavy metal ions which is based on the requirements of the efficient sensing technology as recent equipment is applies molecular system in the chemical sensing section that can precisely recognizing selective target substance and transmit its data to physical signal as a result. In this research is concentrated on realize highly precise by utilizing SPR sensor application of recognition functional sensing membrane. Consequently, according to DTSQ-dye sensing membrane, the resonance angle from low-concentration to the highest concentration $10^{-4}M$ of $Ag^+$ ion is $2.17[^{\circ}]$ and this result indicating 4.3 times larger resonance angle changes compare to the other metal substance. Based on SQ-dye sensing membrane, the difference of resonance angle between low concentration and the highest concentration $10^{-4}M$ of $Cu^{2+}$ ion is $2.3[^{\circ}]$ and this outcome is indicating 4.5 times greater resonance angle change to the other metal substance.

Determination of Proper Irrigation Scheduling for Automated Irrigation System based on Substrate Capacitance Measurement Device in Tomato Rockwool Hydroponics (토마토 암면재배에서 정전용량 측정장치를 기반으로 한 급액방법 구명)

  • Han, Dongsup;Baek, Jeonghyeon;Park, Juseong;Shin, Wonkyo;Cho, Ilhwan;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.366-375
    • /
    • 2019
  • This experiment aims to determine the proper irrigation scheduling based on a whole-substrate capacitance using a newly developed device (SCMD) by comparing with the integrated solar radiation automated irrigation system (ISR) and sap flow sensor automated irrigation system (SF) for the cultivation of tomato (Solanum lycopersicum L. 'Hoyong' 'Super Doterang') during spring to winter season. For the SCMD system, irrigation was conducted every 10 minutes after the first irrigation was started until the first run-off was occurred, of which the substrate capacitance was considered to be 100%. When the capacitance threshold (CT) was reached to the target point, irrigation was re-conducted. After that, when the target drain volume (TDV) was occurred, the irrigation stopped. The irrigation volume per event for the SCMD was set to 50, 75, or 100 mL at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the CT was set to 0.65, 0.75, 0.80, or 0.90 in the winter cultivation. When the irrigation volume per event was set to 50, 75, or 100 mL, the irrigation frequency in a day was 39, 29, and 19, respectively, and the drain rate was 3.04, 9.25, and 20.18%, respectively. When the CT was set to 0.65, 0.75, or 0.90 in winter, the irrigation frequency was about 6, 7, 15 times, respectively and the drain rate was 9.9, 10.8, 35.3% respectively. The signal of stem sap flow at the beginning of irrigation starting time did not correspond to that of solar irradiance when the irrigation volume per event was set to 50 or 75 mL, compared to that of 100 mL. In winter cultivation, the stem sap flow rate and substrate volumetric water content at the CT 0.65 treatment were very low, while they were very high at CT 0.90 was high. All the integrated data suggest that the proper range of irrigation volume per event is from 75 to 100 mL under at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the proper CT seems to be higher than 0.75 and lower than 0.90 under at 75 mL of the irrigation volume per event and TDV 70 mL during the winter cultivation. It is going to be necessary to investigate the relationship between capacitance value and substrate volumetric water content by determining the correction coefficient.