• 제목/요약/키워드: Bio-signal measurement

검색결과 160건 처리시간 0.039초

Multichannel SQUID Systems for Magnetocardiogram

  • Lee, Y.H.;Kim, J.M.;Kim, K.;Kwon, H.;Yu, K.K.;Kang, C,S.;Lee, S.K.;Lim, C.M.;Kim, I.S.;Park, Y.K.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2006년도 High Temperature Superconductivity Vol.XVI
    • /
    • pp.9-9
    • /
    • 2006
  • PDF

24시간 건강상태 모니터링을 위한 Bluethooth를 사용한 소형 저전력 휴대형 Bio-signal 측정 장치를 개발 (Development of Portable Bio-signal Measurement System using Bluetooth for 24-hours Continuous Health Monitoring)

  • 정현권;송길섭;나승유;이희영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.81-84
    • /
    • 2001
  • This paper presents a potable bio-signal measurement system using Bluetooth for the 24-hours continuous health state monitoring of the elderly and the disabled. The measurement system has the functions of acquisition of various bio-signals, wireless data transmission and adjustment of parameters such as gain and cut-off frequency. This measurement system is designed according to the international specifications of the recommendation of AAMI (Association for the Advancement of Medical Instrumentation). The design targets of the developing system about volume and power consumption are 20x30x5mm$^3$ and 8mW.

  • PDF

시각자극에 의한 피로도의 객관적 측정을 위한 연구 조사 (A Survey of Objective Measurement of Fatigue Caused by Visual Stimuli)

  • 김영주;이의철;황민철;박강령
    • 대한인간공학회지
    • /
    • 제30권1호
    • /
    • pp.195-202
    • /
    • 2011
  • Objective: The aim of this study is to investigate and review the previous researches about objective measuring fatigue caused by visual stimuli. Also, we analyze possibility of alternative visual fatigue measurement methods using facial expression recognition and gesture recognition. Background: In most previous researches, visual fatigue is commonly measured by survey or interview based subjective method. However, the subjective evaluation methods can be affected by individual feeling's variation or other kinds of stimuli. To solve these problems, signal and image processing based visual fatigue measurement methods have been widely researched. Method: To analyze the signal and image processing based methods, we categorized previous works into three groups such as bio-signal, brainwave, and eye image based methods. Also, the possibility of adopting facial expression or gesture recognition to measure visual fatigue is analyzed. Results: Bio-signal and brainwave based methods have problems because they can be degraded by not only visual stimuli but also the other kinds of external stimuli caused by other sense organs. In eye image based methods, using only single feature such as blink frequency or pupil size also has problem because the single feature can be easily degraded by other kinds of emotions. Conclusion: Multi-modal measurement method is required by fusing several features which are extracted from the bio-signal and image. Also, alternative method using facial expression or gesture recognition can be considered. Application: The objective visual fatigue measurement method can be applied into the fields of quantitative and comparative measurement of visual fatigue of next generation display devices in terms of human factor.

무선 생체신호 모니터링 시스템 (Wireless Bio-signal Monitoring System)

  • 김도경;이인광;차은종;김경아
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.2055-2056
    • /
    • 2011
  • As rapid aging and high economic level, people are interested in their wellness. And it needs to examine the condition of their health constantly. Proposed device can measure bio-signal by connecting several measurement modules such as spirometric module, blood glucose measurement module, uro-flow measurement module and temperature measurement module. These modules can be chosen as occasion demands. In addition, developed user program enables patients to monitor bio-signal at their own place via the personal computer.

  • PDF

SQUID Systems for Magnetocardiographic Applications

  • Lee, Yong-Ho;Kim, Jin-Mok;Kwon, Hyuk-Chan;Yu, Kwon-Kyu;Kim, Ki-Woong;Park, Yong-Ki
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권2호
    • /
    • pp.1-6
    • /
    • 2007
  • As very sensitive magnetic field sensors, superconducting quantum interference devices (SQUIDs) are used to measure magnetic field signals from the human heart. By analyzing these cardiomagnetic signals, functional diagnoses of heart can be done. In order to measure weak biomagnetic signals, we need a multichannel SQUID array with sensor coverage large enough to cover the whole heart to enable the measurement in a single position setting. In this paper, we review the recent development of SQUID systems for measuring cardiomagnetic fields, with special emphasis on SQUID types.

노약자와 장애인의 건강상태를 모니터링하기 위한 소형 저 전력 휴대용 Bio-signal 측정 장치의 개발 (Development of Portable Power-Efficient Bio-Signal Monitoring System using Bluetooth for the elderly and the disabled)

  • 송길섭;정현권;송민;변증남;이희영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.176-179
    • /
    • 2001
  • A portable bio-signal measurement system for 24-hours continuous health monitoring of the elderly and the disabled is presented. The measurement system has the functions of acquisition of various bio-signals such as ECG, EMG and EEG, wireless data transmission/receive and adjustment of parameters such as gain and cut-off frequency. The data is sent to a host computer or other device via a Bluetooth. The design targets of the developing system for volume and power consumption are $20{\times}30{\times}5(mm^3)$ and 8mW.

  • PDF

다양한 기저선을 갖는 1차 및 2차 미분계의 신호크기 및 신호 대 잡음비 조사 (Simulation of Signal Amplitudes and Signal-to-noise Ratios of $1^{st}$ order and $2^{nd}$ order Gradiometers with Various Baselines)

  • 강찬석;유권규;이용호;권혁찬;김진목;박용기;이순걸
    • Progress in Superconductivity
    • /
    • 제9권1호
    • /
    • pp.40-44
    • /
    • 2007
  • We investigated signal-to-noise ratios (SNRs) of magnetocardiography (MCG) signals using the first-order and the second-order gradiometers of different baselines. The MCG signals were recorded using a measurement system with 61 magnetometers which measured the normal magnetic component to the chest surface. The distance between the chest surface and the bottom of the dewar was changed from 0 cm to 15 cm, and the MCGs were measured for each distance. By subtracting the other signals (distance = 1 to 15 cm) from the reference signal (distance =0 cm), we could simulate the first-order and the second-order gradiometer signals with various baselines. In addition, to evaluate the reproducibility of the simulation, we fabricated the wire wound first-order and second-order gradiometers which measured a normal magnetic component to the chest surface. The baselines of the first-order gradiometers were, respectively, 50 mm, 70 mm and 100 mm and the baseline of the second-order gradiometer was 50 mm. Using these gradiometers, we recorded the MCG signal and compared the SNR between the simulation and the measurement.

  • PDF

도플러 레이더 정보를 이용한 샘플링 시점 기반의 생체 신호 측정 알고리즘 개발 (Algorithm Development of Human Body Bio-Signal Measurement based on Sampling Time using Doppler Radar Information)

  • 유재춘;이명의
    • 한국항행학회논문지
    • /
    • 제24권4호
    • /
    • pp.322-327
    • /
    • 2020
  • 최근 도플러 레이더를 이용하여 생체 신호를 획득하는 연구가 개발되어 병상의 환자들에게 적용되는 기술로 사용되고 있다. 하지만 측정되는 맥박의 경우 호흡 신호가 잡음으로 발생하여 정확도가 낮아지는 문제가 발생한다. 본 논문에서는 도플러 레이더를 이용하여 생체신호를 측정할 때 맥박을 측정하기 위한 신호의 정확도를 향상시키기 위한 샘플링 시점 기반의 생체 신호 측정 알고리즘을 제안한다. 제안하는 알고리즘은 두 개의 샘플링 시점을 기반으로 생체 신호 측정 시 발생되는 잡음을 제거하여 측정 생체 신호의 정확도를 높이는 것으로 실제 의료 장비 및 기존 생체 신호 알고리즘과 비교하였을 때, 의료 장비와 90% 이상의 유사함을 보이며, 또한 기존 알고리즘에 비해 심한 진폭의 변화가 최소화 된 것을 확인하였다.

Implementation of Network System for Bio-physical signal Communication

  • Kim, Jeong Lae;Kang, Jeong Jin;Rothwell, Edward J.
    • International Journal of Advanced Culture Technology
    • /
    • 제1권1호
    • /
    • pp.1-5
    • /
    • 2013
  • This network system for home care realized communication by the bio-physical signal, to convey physical rhythm. Four function of displacement had point of a Vision, Somatosensory, Vestibular and CNS. Bio-physical signal was decided to design a maximum points and minimum points with 0.01unit in reference level. Bio-physical signal was checked to compound physical condition of body posture for sensory organ. There detected a measurement of Vision, Somatosensory, Vestibular, CNS and BMI. The service of network system of home can be used to support a health care system for health assistant in health care center. It will expect to manage a physical parameter for network communication.

  • PDF

MICS 표준에 기반한 무선 텔레메트리 시스템 개발 (Development of a wireless telemetry system based on MICS standard)

  • 이승하;박일용
    • 센서학회지
    • /
    • 제18권1호
    • /
    • pp.63-71
    • /
    • 2009
  • It is said that the desirable bio-signal measurement and stimulation system should be an implantable type if the several problems such as biocompatibility, electrical safety, and so on are overcome. In addition to the biocompatibility issue, a robust RF communication and a stable electrical power source for the implantable bio-signal measurement and stimulation system are very important matters. In this paper, a wireless telemetry system which adopts the FCC's approved MICS (medical implant communication service) protocol and a wireless power transmission has been proposed. The proposed system composed of a base station (BS) and an implantable medical device (IMD) has the advantages that the interference with other RF devices can be reduced by the use of the specially assigned MICS frequency band of 402.MHz to 405 MHz. Also, the proposed system includes various functions of a multi-channel bio-signal acquisition and an electric stimulation. Since the electrical power for the IMD can be provided by the inductive link between PCB patterned coils, the IMD needs no battery so that the IMD can be smaller size and much less dangerous than the active type IMD which includes the internal battery. Finally, the validity as a wireless telemetry system has been demonstrated through the experiments by using the implemented BS and IMD.