• Title/Summary/Keyword: Bio-reduction

Search Result 745, Processing Time 0.022 seconds

An Experimental Study on Spray Characteristics of Directly Injected Bio-Ethanol-Gasoline Blended Fuel By Varying Fuel Temperature (직접분사식 바이오 에탄올-가솔린 혼합연료의 연료온도에 따른 분무 특성에 관한 실험적 연구)

  • Lee, Seangwook;Park, Giyoung;Kim, Jongmin;Park, Bongkyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.636-642
    • /
    • 2014
  • As environment problem became a worldwide issue, countries are tightening regulations regarding greenhouse gas reduction and improvement of air pollution problems. With these circumstances, one of the renewable energies produced from biomass is getting attention. Bio-ethanol, which is applicable to SI engine, showed a positive effect on the PFI (Port Fuel Injection) type. However, Ethanol has a problem in homogeneous mixture formation because it has high latent heat of vaporization characteristics and in the GDI (Gasoline Direct Injection) type, mixture formation is required quickly after fuel injection. Particularly, South Korea is one of the countries with great temperature variation among seasons. With this reason, South Korea supply fuel additive for smooth engine operation during winter. Therefore, experimental study and investigation about application possibility of blending fuel is necessary. This paper demonstrates the spray characteristics by using the CVC direct injection and setting the bio-ethanol blending fuel temperature close to the temperature during each seasons: -7, 25, $35^{\circ}C$. The diameter and the width of the CVC are 86mm and 39mm. High-pressure fuel supply system was used for target injection pressure. High-speed camera was used for spray visualization. The experiment was conducted by setting the injection pressure and ambient pressure according to each temperature of bio-ethanol blending fuel as a parameter. The result of spray visualization experiment demonstrates that as the temperature of the fuel is lower, the atomization quality is lower, and this increase spray penetration and make mixture formation difficult. Injection strategy according to fuel temperature and bio-ethanol blending rate is needed for improving characteristics.

Physico-mechanical Properties and Formaldehyde/TVOC Emission of Particleboards with Volcanic Pozzolan

  • Kim, Sumin;An, Jae-Yoon;Kim, Jin-A;Kim, Hee-Soo;Kim, Hyun-Joong;Kim, Hak-Gyeom
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.39-50
    • /
    • 2007
  • The purpose of this study was to investigate the physico-mechanical properties and characteristics on reduction of formaldehyde and total volatile organic compound (TVOC) emission from particleboard (PB) with added volcanic pozzolan. Pozzolan was added as a scavenger at the level of 1, 3, 5, and 10 wt.% of urea formaldehyde (UF) resin for PB manufacture. The moisture content, density, thickness swelling, water absorption and physical properties of PBs were examined. Three-point bending strength and internal bond strength were determined using a universal testing machine. Formaldehyde and TVOC were determined by desiccator and 20L small chamber methods. With increasing pozzolan content the physical and mechanical properties of the PBs were not significantly changed, but formaldehyde and TVOC emissions were decreased. Because pozzolan has a rough and irregular surface with porous form, it can be used as a scavenger for PBs at a content up to 10 wt.% without any detrimental effect on the physical and mechanical properties.

Measurement of the Greenhouse Gas Emission Benefits from the Marine Bio-Energy Development Project (해양바이오에너지 개발사업의 온실가스 저감편익 추정)

  • Kim, Tae-Young;Pyo, Hee-Dong;Kim, Hye-Min;Park, Se-Hun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.217-225
    • /
    • 2013
  • It is time to develop new renewable energy that could fundamentally replace fossil fuel, which has been increasingly needed due to environmental pollution and energy security. Korean marine bio-energy development project is planned to produce 50% of total bioenergy. This study attempts to measure the greenhouse gas emission reduction benefits of marine bio-energy development project through contingent valuation method. Single bounded dichotomous choice (SBDC) is applied with spike model. The results show that the average willingness to pay are estimated to be KRW 4,190 at SBDC, per household per year. If the result has been expanded to the region which is survey conducted, KRW 50.1 billion annually. These quantitative information can be usefully utilized in the cost benefit analysis to implement project and policy-making for the industrialization of marine bio-energy development project.

Synthesis of Gold Nanoparticles by Electro-reduction Method and Their Application as an Electro-hyperthermia System

  • Yoon, Young Il;Kim, Kwang-Soo;Kwon, Yong-Soo;Cho, Hee-Sang;Lee, Hak Jong;Yoon, Chang-Jin;Yoon, Tae-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1806-1808
    • /
    • 2014
  • We report the successful preparation of gold nanoparticles (Au NPs) using a novel electroreduction process, which is simple, fast, and environmentally friendly (toxic chemicals such as strong reducing agents are not required). Our process allows for the mass production of Au NPs and adequate particle size control. The Au NPs prepared show high biocompatibility and are non-toxic to healthy human cells. By applying radio-frequency (RF) ablation, we monitored the electro-hyperthermia effect of the Au NPs at different RFs. The Au NPs exhibit a fast increase in temperature to $55^{\circ}C$ within 5 min during the application of an RF of 13 MHz. This temperature rise is sufficient to promote apoptosis through thermal stress. Our work suggests that the selective Au NP-mediated electro-hyperthermia therapy for tumor cells under an RF of 13 MHz has great potential as a clinical treatment for specific tumor ablation.

Enhanced Anti-inflammatory Effects of γ-irradiated Pig Placenta Extracts

  • Kim, Kang Chang;Heo, Jae Hyeok;Yoon, Jong Kwang;Jang, Yuyeon;Kim, Youn Kyu;Kim, Chang-Kyu;Oh, Yu-Kyung;Kim, Young Bong
    • Food Science of Animal Resources
    • /
    • v.35 no.3
    • /
    • pp.293-298
    • /
    • 2015
  • Porcine placenta extract (PPE) is known to possess anti-inflammatory properties owing to its high concentration of bioactive substances. However, the need to eliminate blood-borne infectious agents while maintaining biological efficacy raises concerns about the optimal method for sterilizing PPE. Therefore, the objective of this study was to compare the effects of the standard pressurized heat (autoclaving) method of sterilization with γ-irradiation on the anti-inflammatory effects of PPE. The anti-inflammatory actions of these two preparations of PPE were evaluated by measuring their inhibitory effects on the production of NO, the expression of iNOS protein, and the expression of iNOS, COX2, TNF-α, IL-1β, and IL-6 mRNA in lipopolysaccharide-stimulated RAW 264.7 cells. Compared with autoclaved PPE, γ-irradiated PPE showed significantly greater inhibition of NO production and iNOS protein expression, and produced a greater reduction in the expression of iNOS, COX2, TNF-α, IL-1β, and IL-6 mRNA. These results provide evidence that the sterilization process is crucial in determining the biological activity of PPE, especially its anti-inflammatory activity. Collectively, our data suggest that γ-irradiated PPE acts at the transcriptional level to effectively and potently suppresses the production of NO and the expression of pro-inflammatory cytokines.

Newly Developed BioDegradable Mg Alloys and Its Biomedical Applications

  • Seok, Hyeon-Gwang;Kim, Yu-Chan;Yang, Gui Fu;Cha, Pil-Ryeong;Jo, Seong-Yun;Yang, Seok-Jo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.55.2-55.2
    • /
    • 2012
  • Intensive theoretical and experimental studies have been carried out at Korean Institute of Science and Technology (KIST) on controlling the bio absorbing rate of the Mg alloys with high mechanical strength through tailoring of electrochemical potential. Key technology for retarding the corrosion of the Mg alloys is to equalize the corrosion potentials of the constituent phases in the alloys, which prevented the formation of Galvanic circuit between the constituent phases resulting in remarkable reduction of corrosion rate. By thermodynamic consideration, the possible phases of a given alloy system were identified and their work functions, which are related to their corrosion potentials, were calculated by the first principle calculation. The designed alloys, of which the constituent phases have similar work function, were fabricated by clean melting and extrusion system. The newly developed Mg alloys named as KISTUI-MG showed much lower corrosion rate as well as higher strength than previously developed Mg alloys. Biocompatibility and feasibility of the Mg alloys as orthopedic implant materials were evaluated by in vitro cell viability test, in vitro degradation test of mechanical strength during bio-corrosion, in vivo implantation and continuous observation of the implant during in vivo absorbing procedures. Moreover, the cells attached on the Mg alloys was observed using cryo-FIB (focused ion beam) system without the distortion of cell morphology and its organ through the removal of drying steps essential for the preparation of normal SEM/TEM samples. Our Mg alloys showed excellent biocompatibility satisfying the regulations required for biomedical application without evident hydrogen evolution when it implanted into the muscle, inter spine disk, as well as condyle bone of rat and well contact interface with bone tissue when it was implanted into rat condyle.

  • PDF

Synthesis and Electrochemical Characterization of Reduced Graphene Oxide-Manganese Oxide Nanocomposites

  • Lee, Yu-Ri;Song, Min-Sun;Lee, Kyung-Min;Kim, In-Young;Hwang, Seong-Ju
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Nanocomposites of reduced graphene oxide and manganese (II,III) oxide can be synthesized by the freeze-drying process of the mixed colloidal suspension of graphene oxide and manganese oxide, and the subsequent heat-treatment. The calcined reduced graphene oxide-manganese (II,III) oxide nanocomposites are X-ray amorphous, suggesting the formation of homogeneous and disordered mixture without any phase separation. The reduction of graphene oxide to reduced graphene oxide upon the heat-treatment is evidenced by Fourier-transformed infrared spectroscopy. Field emission-scanning electronic microscopy and energy dispersive spectrometry clearly demonstrate the formation of porous structure by the house-of-cards type stacking of reduced graphene oxide nanosheets and the homogeneous distribution of manganese ions in the nanocomposites. According to Mn K-edge X-ray absorption spectroscopy, manganese ions in the calcined nanocomposites are stabilized in octahedral symmetry with mixed Mn oxidation state of Mn(II)/Mn(III). The present reduced graphene oxide-manganese oxide nanocomposites show characteristic pseudocapacitance behavior superior to the pristine manganese oxide, suggesting their applicability as electrode material for supercapacitors.

Synergistic Phosphate Solubilization by Burkholderia anthina and Aspergillus awamori

  • Walpola, Buddhi Charana;Jang, Hyo-Ju;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.117-121
    • /
    • 2013
  • Single or co-inoculation of phosphate solubilizing bacterial and fungal strains (Burkholderia anthina and Aspergillus awamori respectively) was performed separately to assess their synergistic and antagonistic interactions and the potential to be used as bio-inoculants. Co-inoculation was found to release the highest content of soluble phosphorus (1253 ${\mu}g\;ml^{-1}$) into the medium, followed by single inoculation of fungal strain (1214 ${\mu}g\;ml^{-1}$) and bacterial strain (997 ${\mu}g\;ml^{-1}$). However, there was no significant difference between single inoculation of fungal strain and co-inoculation of fungal and bacterial strain in terms of the phosphorous release. The highest pH reduction, organic acid production and glucose consumption were observed in the sole A. awamori inoculated culture medium. According to the plant growth promotion bioassays, co-inoculation of the microbial strains resulted in 21% and 43% higher shoot and root growth of the mung bean seedlings respectively as compared to the respective controls. Therefore, co-inoculation of B. anthina and A. awamori showed better performance in stimulating plant growth than that in inoculation of each strain alone. However, assessment period of the present study being short, we recommend in engaging further experimentation under field conditions in order to test the suitability of the strains to be used as bio-inoculants.

Effects of radiation therapy on the dislocation resistance of root canal sealers applied to dentin and the sealer-dentin interface: a pilot study

  • Pallavi Yaduka;Rubi Kataki;Debosmita Roy;Lima Das;Shachindra Goswami
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.22.1-22.12
    • /
    • 2021
  • Objectives: This study evaluated and compared the effects of radiation therapy on the dislocation resistance of AH Plus and BioRoot RCS applied to dentin and the sealer-dentin interface. Materials and Methods: Thirty single-rooted teeth were randomly assigned to 2 groups (n = 15 each): AH Plus (Dentsply DeTrey) and BioRoot RCS (Septodont). Each group was subdivided into control and experimental groups. The experimental group was subjected to a total radiation dose of 60 Gy. The root canals of all samples were cleaned, shaped, and obturated using the single-cone technique. Dentin slices (1 mm) were sectioned from each root third for the push-out test and scanning electron microscopy (SEM) was done to examine the sealer-dentin interface. The failure mode was determined using stereomicroscopy. Bond strength data were analyzed by the independent t-test, 1-way analysis of variance, and the Tukey post hoc test (α = 0.05). Results: Significantly lower bond strength was observed in irradiated teeth than non-irradiated teeth in the AH Plus group (p < 0.05). The BioRoot RCS group showed no significant reduction in bond strength after irradiation (p > 0.05) and showed a higher post-irradiation bond strength (209.92 ± 172.26 MPa) than the AH Plus group. SEM revealed slightly larger gap-containing regions in irradiated specimens from both groups. Conclusions: The dislocation resistance of BioRoot RCS was not significantly changed by irradiation and was higher than that of AH Plus. BioRoot RCS may be the sealer of choice for root canal treatment in patients undergoing radiation therapy.

The Status of Production and Usage of Bio-Jet Fuel (바이오항공유 생산 및 사용현황)

  • Young-Kwan, Lim;Jin-Woo Doe
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.472-478
    • /
    • 2023
  • The usage of jet fuel has been increasing with increasing passenger and logistics movements under globalization. CO2, which is the main global warming gas from aircraft, was charged about 3.5% of total global CO2 emissions and 12% of transportation fuel emissions. For these reasons, a lot of governments and the international civil aviation organization (ICAO) are trying to reduce CO2 emissions via the introduction of bio-jet fuel. In this paper, we showed the jet fuel properties, specifications, and presentative production methods of bio-jet fuel such as alcohol to jet (ATJ), oil to jet (OTJ), gas to jet (GTJ) and sugar to jet (STJ). Also, we described the status of global and domestic bio-jet fuel usage and the policy plan for efficient distribution.