• Title/Summary/Keyword: Bio-medical engineering

Search Result 558, Processing Time 0.026 seconds

Inorganic Materials and Process for Bioresorbable Electronics

  • Seo, Min-Ho;Jo, Seongbin;Koo, Jahyun
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.46-56
    • /
    • 2020
  • This article highlights new opportunities of inorganic semiconductor materials for bio-implantable electronics, as a subset of 'transient' technology defined by an ability to physically dissolve, chemically degrade, or disintegrate in a controlled manner. Concepts of foundational materials for this area of technology with historical background start with the dissolution chemistry and reaction kinetics associated with hydrolysis of nanoscale silicon surface as a function of temperature and pH level. The following section covers biocompatibility of silicon, including related other semiconductor materials. Recent transient demonstrations of components and device levels for bioresorbable implantation enable the future direction of the transient electronics, as temporary implanters and other medical devices that provide important diagnosis and precisely personalized therapies. A final section outlines recent bioresorbable applications for sensing various biophysical parameters, monitoring electrophysiological activities, and delivering therapeutic signals in a programmed manner.

Development and Performance Evaluation of Parallel Sequence Analysis System on PC-Cluster (PC-Cluster 기반 병렬형 유전자 서열 검색 시스템의 개발 및 성능 평가)

  • Shin Yong-Won;Park Jeong-Seon
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.617-621
    • /
    • 2004
  • In recent, researchers in the field of Bioinformatics need to analyze thousands of genome sequences efficiently according to introduce of new analysis methods and technologies such as genome expression microchip. This rapid growth in the field of bio-engineering needs computing resources to analyze rapidly for genome sequences, but it does not introduce the computing resources due to an enormous investment expense. The core factor of this study is integrated environment based PC-Cluster system & high speed access rate up to 155Mbps, continuous collection system for bio-information at home and abroad. The results of the study are establishment & stabilization of information and communication infrastructure, establishment & stabilization of high performance computer network up to 155Mbps, development of PC-Cluster system with 32 nodes, a parallel BLAST on Cluster system, which can provides scalable speedup in terms of response time, and development of collection & search system for bio-information.

Investigations on IT/ET and IT/BT Convergence Technology Using Power Line Communications (Power Line Communications을 이용한 IT/ET, IT/BT 컨버젼스 기술에 관한 연구)

  • Park, Mi-Kyoung;Huh, Young;Oh, Sang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.250-252
    • /
    • 2006
  • Due to enhanced high IT (information technology) development, IT-based technology convergences such as IT/ET(electric technology), IT/BT(biology technology) and IT/NT(nano technology) are actively merging trend and their applications spread wide. In this paper PLC (power line communication), one of the merging IT, is investigated as one of the potential IT candidates for IT/ET and IT/BT convergence technology for DLC (direct load control) or bio-medical engineering such as ubiquitous health cares or D2H2 (distributed diagnosis and home health care).

  • PDF

3D Non-Rigid Registration for Abdominal PET-CT and MR Images Using Mutual Information and Independent Component Analysis

  • Lee, Hakjae;Chun, Jaehee;Lee, Kisung;Kim, Kyeong Min
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.311-317
    • /
    • 2015
  • The aim of this study is to develop a 3D registration algorithm for positron emission tomography/computed tomography (PET/CT) and magnetic resonance (MR) images acquired from independent PET/CT and MR imaging systems. Combined PET/CT images provide anatomic and functional information, and MR images have high resolution for soft tissue. With the registration technique, the strengths of each modality image can be combined to achieve higher performance in diagnosis and radiotherapy planning. The proposed method consists of two stages: normalized mutual information (NMI)-based global matching and independent component analysis (ICA)-based refinement. In global matching, the field of view of the CT and MR images are adjusted to the same size in the preprocessing step. Then, the target image is geometrically transformed, and the similarities between the two images are measured with NMI. The optimization step updates the transformation parameters to efficiently find the best matched parameter set. In the refinement stage, ICA planes from the windowed image slices are extracted and the similarity between the images is measured to determine the transformation parameters of the control points. B-spline. based freeform deformation is performed for the geometric transformation. The results show good agreement between PET/CT and MR images.

A Remote Rehabilitation System using Kinect Stereo Camera (키넥트 스테레오 영상을 이용한 원격 재활 시스템)

  • Kim, Kyungah;Chung, Wan-Young;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.196-201
    • /
    • 2016
  • Rehabilitation exercises are the treatments designed to help patients who are in the process of recovery from injury or illness to restore their body functions back to the original status. However, many patients suffering from chronic diseases have found difficulties visiting hospitals for the rehabilitation program due to lack of transportation, cost of the program, their own busy schedules, etc. Also, the program usually contains a few medical check-ups which can cause patients to feel uncomfortable. In this paper, we develop a remote rehabilitation system with bio-signals by a stereo camera. A Kinect stereo camera manufactured by Microsoft corporation was used to recognize the body movement of a patient by using its infrared(IR) camera. Also, we detect the chest area of a user from the skeleton data and process to gain respiratory status. ROI coordinates are created on a user's face to detect photoplethysmography(PPG) signals to calculate heart rate values from its color sensor. Finally, rehabilitation exercises and bio-signal detecting features are combined into a Windows application for the cost effective and high performance remote rehabilitation system.

Field Effect Transistors for Biomedical Application (전계효과트랜지스터의 생명공학 응용)

  • Sohn, Young-Soo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • As the medical paradigm is changing from disease treatment to disease prevention and an early diagonosis, the demand to develop techniques for the detection of minute concentrations of biomolecules is increasing. Among the various techniques to sense the minute concentration of biomolecules, the biosensors utilizing the matured semiconductor techniques are presented here. To understand such biosensors, the structure and working principle of a MOSFET (Metal-oxide-semiconductor field-effect transistor) which is the basic semiconductor device is firstly introduced, and then the ISFET (Ion sensitive FET), BioFET (Biologically modified FET), Nanowire FET, and IFET (Ionic FET) are introduced, and their applications to biomedical fields are discussed.

Development of Bio-Check Unit and Health Index for Measuring Health Degree through Noninvasive Examination (비침습적 검사를 통한 건강 정도 측정을 위한 바이오체크 유닛과 건강지수의 개발)

  • Lee, Chong-Sun;Yi, Sung-Il;So, Byung-Rok;Park, Byung-Kang;Chung, In-Wook;Lee, Seung-Ju;Park, Seon-Kyun;Han, Cheng-En
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.859-865
    • /
    • 2011
  • A bio-check unit and health index were developed to provide information on personal health state with easily available noninvasive measurements and surveys. Four health indices were defined such as cardiovascular index, stress index, obesity index, and management index. Methods were developed to calculate health index scores from measured physiological signals and answer of survey questions. In order to evaluate effectiveness of the health indices, a clinical trial was conducted for 362 persons who visited general hospital for annual health inspection. The cardiovascular index showed a good correlation coefficient of 0.685 with the cardiovascular health graded by a medical doctor. The stress index showed a good correlation coefficient of 0.638 with the results of stress questionnaires being used in the public health center. Once the health index function is added in the bio-check unit, the unit may provide useful contents for personal health management.

Rotational Characteristics of Target Registration Error for Contour-based Registration in Neuronavigation System: A Phantom Study (뉴로내비게이션 시스템 표면정합에 대한 병변 정합 오차의 회전적 특성 분석: 팬텀 연구)

  • Park, Hyun-Joon;Mun, Joung Hwan;Yoo, Hakje;Shin, Ki-Young;Sim, Taeyong
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.68-74
    • /
    • 2016
  • In this study, we investigated the rotational characteristics which were comprised of directionality and linearity of target registration error (TRE) as a study in advance to enhance the accuracy of contour-based registration in neuronavigation. For the experiment, two rigid head phantoms that have different faces with specially designed target frame fixed inside of the phantoms were used. Three-dimensional coordinates of facial surface point cloud and target point of the phantoms were acquired using computed tomography (CT) and 3D scanner. Iterative closest point (ICP) method was used for registration of two different point cloud and the directionality and linearity of TRE in overall head were calculated by using 3D position of targets after registration. As a result, it was represented that TRE had consistent direction in overall head region and was increased in linear fashion as distance from facial surface, but did not show high linearity. These results indicated that it is possible for decrease TRE by controlling orientation of facial surface point cloud acquired from scanner, and the prediction of TRE from surface registration error can decrease the registration accuracy in lesion. In the further studies, we have to develop the contour-based registration method for improvement of accuracy by considering rotational characteristics of TRE.

Kegel Exercise System Using an Arduino sensor (아두이노 센서를 이용한 케겔 운동 시스템 설계)

  • Cha, Jea-Hui;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.198-201
    • /
    • 2015
  • Using Arduino with a pressure sensor to create an interest in modern health care program is aimed. Currently, Korea is estimated that there are 4.2 million people in total incontinence. Through the convergence of Bio Technology and InformationTechnology these patients it is easy and simple to induce urinary incontinence, erectile dysfunction treatment, etc., and to prevent the most effective pelvic floor muscle exercises (Kegel exercises below). The Kegel medical equipments which are currently sold in the market make users exercise by giving electrical stimulations compulsively. Users need to take off their bottoms and take the Femcon therapy in a closed room. This causes various restrictions of time, space and hygiene. This thesis designs a Kegel medical equipment which combines BT and IT, free form restraint in regard to space and hygiene, without the need to take off bottoms.

  • PDF

Surface Modification and Medical Formulation Technology Using Adhesion of Plant Tannic Acid (식물 유래 탄닌산의 접착능을 이용한 표면 개질 및 의료용 제형 기술 동향)

  • Park, Eunsook;Shin, Mikyung;Lee, Haeshin
    • Journal of Adhesion and Interface
    • /
    • v.20 no.2
    • /
    • pp.71-75
    • /
    • 2019
  • Tannic acid is one of the most commonly found polyphenols in the vegetable field. Initially, research on tannins concentrated on physiological functions such as antioxidants. Recently, however, tannic acid has attracted much interest as a molecular glue as it has been found to interact virtually all bio-macromolecules such as proteins and DNA. The various properties of tannic acid are expected to control the wettability of the surface, contribute to energy storage and generation, and show potential as a medical agent. Here, tannic acid will be discussed about the interaction of with bio-macromolecules as a molecular glue, surface modification, and utilization of itself as biomaterials.