• Title/Summary/Keyword: Bio-inspired routing

Search Result 10, Processing Time 0.028 seconds

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

Bio-Inspired Routing Protocol for Mobile Ad Hoc Networks (이동 애드혹 네트워크를 위한 생체모방 라우팅 프로토콜)

  • Choi, Hyun-Ho;Roh, Bongsoo;Choi, HyungSeok;Lee, Jung-Ryun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2205-2217
    • /
    • 2015
  • Bio-inspired routing protocol uses a principle of swarm intelligence, which finds the optimal path to the destination in a distributed and autonomous way in dynamic environments, so that it can maximize routing performances, reduce control overhead, and recover a path failure quickly according to the change of network topology. In this paper, we propose a bio-inspired routing protocol for mobile ad hoc networks. The proposed scheme uses a function of overhearing via wireless media in order to obtain the routing information without additional overhead. Through overhearing, the pheromone is diffused around the shortest path between the source and destination. Based on this diffused pheromone, a probabilistic path exploration is executed and the useful alternative routes between the source and destination are collected. Therefore, the proposed routing protocol can ensure the up-to-date routing information while reducing the control overhead. The simulation results show that the proposed scheme outperforms the typical AODV and AntHocNet protocols in terms of routing performances and significantly decreases the routing overhead against the AntHocNet.

A Hybrid Routing Protocol Based on Bio-Inspired Methods in a Mobile Ad Hoc Network

  • Alattas, Khalid A
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.207-213
    • /
    • 2021
  • Networks in Mobile ad hoc contain distribution and do not have a predefined structure which practically means that network modes can play the role of being clients or servers. The routing protocols used in mobile Ad-hoc networks (MANETs) are characterized by limited bandwidth, mobility, limited power supply, and routing protocols. Hybrid routing protocols solve the delay problem of reactive routing protocols and the routing overhead of proactive routing protocols. The Ant Colony Optimization (ACO) algorithm is used to solve other real-life problems such as the travelling salesman problem, capacity planning, and the vehicle routing challenge. Bio-inspired methods have probed lethal in helping to solve the problem domains in these networks. Hybrid routing protocols combine the distance vector routing protocol (DVRP) and the link-state routing protocol (LSRP) to solve the routing problem.

A Novel Bio-inspired Trusted Routing Protocol for Mobile Wireless Sensor Networks

  • Zhang, Mingchuan;Xu, Changqiao;Guan, Jianfeng;Zheng, Ruijuan;Wu, Qingtao;Zhang, Hongke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.74-90
    • /
    • 2014
  • Routing in mobile wireless sensor networks (MWSNs) is an extremely challenging issue due to the features of MWSNs. In this paper, we present a novel bio-inspired trusted routing protocol (B-iTRP) based on artificial immune system (AIS), ant colony optimization (ACO) and Physarum optimization (PO). For trust mechanism, B-iTRP monitors neighbors' behavior in real time and then assesses neighbors' trusts based on AIS. For routing strategy, each node proactively finds routes to the Sink based on ACO. When a backward ant is on the way to return source, it senses the energy residual and trust value of each node on the discovered route, and calculates the link trust and link energy of the route. Moreover, B-iTRP also assesses the availability of route based on PO to maintain the route table. Simulation results show how B-iTRP can achieve the effective performance compared to existing state-of-the-art algorithms.

Male-Silkmoth-Inspired Routing Algorithm for Large-Scale Wireless Mesh Networks

  • Nugroho, Dwi Agung;Prasetiadi, Agi;Kim, Dong-Seong
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.384-393
    • /
    • 2015
  • This paper proposes an insect behavior-inspired routing algorithm for large-scale wireless mesh networks. The proposed algorithm is adapted from the behavior of an insect called Bombyx mori, a male silkmoth. Its unique behavior is its flying technique to find the source of pheromones. The algorithm consists of two steps: the shortest-path algorithm and the zigzag-path algorithm. First, the shortest-path algorithm is employed to transmit data. After half of the total hops, the zigzag-path algorithm, which is based on the movement of the male B. mori, is applied. In order to adapt the biological behavior to large-scale wireless mesh networks, we use a mesh topology for implementing the algorithm. Simulation results show that the total energy used and the decision time for routing of the proposed algorithm are improved under certain conditions.

Bio-Inspired Energy Efficient Node Scheduling Algorithm in Wireless Sensor Networks (무선 센서 망에서 생체 시스템 기반 에너지 효율적인 노드 스케쥴링 기법)

  • Son, Jae-Hyun;Shon, Su-Goog;Byun, Hee-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.528-534
    • /
    • 2013
  • The energy consumption problem should be taken into consideration in wireless sensor network. Many studies have been proposed to address the energy consumption and delay problem. In this paper, we propose BISA(Bio-inspired Scheduling Algorithm) to reduce the energy consumption and delay in wireless sensor networks based on biological system. BISA investigates energy-efficient routing path and minimizes the energy consumption and delay using multi-channel for data transmission by multiplexing data transmission path. Through simulation, we confirm that the proposed scheme guarantees the efficient energy consumption and delay requirement.

Bio-inspired Node Selection and Multi-channel Transmission Algorithm in Wireless Sensor Networks (무선 센서망에서 생체시스템 기반의 전송노드 선택 및 다중 채널 전송 알고리즘)

  • Son, Jae Hyun;Yang, Yoon-Gi;Byun, Hee-Jung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.5
    • /
    • pp.1-7
    • /
    • 2014
  • WireWireless sensor networks(WSNs) are generally comprised of densely deployed sensor nodes, which causes highly redundant sensor data transmission and energy waste. Many studies have focused on energy saving in WSNs. However, delay problem also should be taken into consideration for mission-critical applications. In this paper, we propose a BISA (Bio-Inspired Scheduling Algorithm) to reduce the energy consumption and delay for WSNs inspired by biological systems. BISA investigates energy-efficient routing path and minimizes the energy consumption and delay using multi-channel for data transmission. Through simulations, we observe that the BISA archives energy efficiency and delay guarantees.

Improved AntHocNet with Bidirectional Path Setup and Loop Avoidance (양방향 경로 설정 및 루프 방지를 통한 개선된 AntHocNet)

  • Rahman, Shams ur;Nam, Jae-Choong;Khan, Ajmal;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.64-76
    • /
    • 2017
  • Routing in mobile ad hoc networks (MANETs) is highly challenging because of the dynamic nature of network topology. AntHocNet is a bio-inspired routing protocol for MANETs that mimics the foraging behavior of ants. However, unlike many other MANET routing protocols, the paths constructed in AntHocNet are unidirectional, which requires a separate path setup if a route in the reverse direction is also required. Because most communication sessions are bidirectional, this unidirectional path setup approach is often inefficient. Moreover, AntHocNet suffers from looping problems because of its property of multiple paths and stochastic data routing. In this paper, we propose a modified path setup procedure that constructs bidirectional paths. We also propose solutions to some of the looping problems in AntHocNet. Simulation results show that performance is significantly enhanced in terms of overhead, end-to-end delay, and delivery ratio when loops are prevented. Performance is further improved, in terms of overhead, when bidirectional paths setup is employed.

Bio-inspired Load Balancing Routing for Delay-Guaranteed Services in Ever-Changing Networks

  • Kim, Young-Min;Kim, Hak Suh;Jung, Boo-Geum;Park, Hea-Sook;Park, Hong-Shik
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.414-424
    • /
    • 2013
  • We consider a new load balancing routing for delay-guaranteed services in the network in which the traffic is dynamic and network topologies frequently change. For such an ever-changing network, we propose a new online load balancing routing called AntLBR, which exploits the ant colony optimization method. Generally, to achieve load balancing, researchers have tried to calculate the traffic split ratio by solving a complicated linear programming (LP) problem under the static network environment. In contrast, the proposed AntLBR does not make any attempt to solve this complicated LP problem. So as to achieve load balancing, AntLBR simply forwards incoming flows by referring to the amount of pheromone trails. Simulation results indicate that the AntLBR algorithm achieves a more load-balanced network under the changing network environment than techniques used in previous research while guaranteeing the requirements of delay-guaranteed services.

Development of Flexible and Lightweight Robotic Hand with Tensegrity-Based Joint Structure for Functional Prosthesis (기능형 의수를 위한 텐스그리티 관절 구조 기반의 유연하고 가벼운 로봇 핸드 개발)

  • Geon Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • This paper presents an under-actuated robotic hand inspired by the ligamentous structure of the human hand for a prosthetic application. The joint mechanisms are based on the concept of a tensegrity structure formed by elastic strings. These rigid bodies and elastic strings in the mechanism emulate the phalanx bones and primary ligaments found in human finger joints. As a result, the proposed hand inherently possesses compliant characteristics, ensuring robust adaptability during grasping and when interacting with physical environments. For the practical implementation of the tensegrity-based joint mechanism, we detail the installation of the strings and the routing of the driving tendon, which are related to extension and flexion, respectively. Additionally, we have designed the palm structure of the proposed hand to facilitate opposition and tripod grips between the fingers and thumb, taking into account the transverse arch of the human palm. In conclusion, we tested a prototype of the proposed hand to evaluate its motion and grasping capabilities.