• Title/Summary/Keyword: Bio-inspired Algorithms

Search Result 28, Processing Time 0.029 seconds

Performance Improvement of Feature Selection Methods based on Bio-Inspired Algorithms (생태계 모방 알고리즘 기반 특징 선택 방법의 성능 개선 방안)

  • Yun, Chul-Min;Yang, Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.331-340
    • /
    • 2008
  • Feature Selection is one of methods to improve the classification accuracy of data in the field of machine learning. Many feature selection algorithms have been proposed and discussed for years. However, the problem of finding the optimal feature subset from full data still remains to be a difficult problem. Bio-inspired algorithms are well-known evolutionary algorithms based on the principles of behavior of organisms, and very useful methods to find the optimal solution in optimization problems. Bio-inspired algorithms are also used in the field of feature selection problems. So in this paper we proposed new improved bio-inspired algorithms for feature selection. We used well-known bio-inspired algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), to find the optimal subset of features that shows the best performance in classification accuracy. In addition, we modified the bio-inspired algorithms considering the prior importance (prior relevance) of each feature. We chose the mRMR method, which can measure the goodness of single feature, to set the prior importance of each feature. We modified the evolution operators of GA and PSO by using the prior importance of each feature. We verified the performance of the proposed methods by experiment with datasets. Feature selection methods using GA and PSO produced better performances in terms of the classification accuracy. The modified method with the prior importance demonstrated improved performances in terms of the evolution speed and the classification accuracy.

Bio-inspired neuro-symbolic approach to diagnostics of structures

  • Shoureshi, Rahmat A.;Schantz, Tracy;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.229-240
    • /
    • 2011
  • Recent developments in Smart Structures with very large scale embedded sensors and actuators have introduced new challenges in terms of data processing and sensor fusion. These smart structures are dynamically classified as a large-scale system with thousands of sensors and actuators that form the musculoskeletal of the structure, analogous to human body. In order to develop structural health monitoring and diagnostics with data provided by thousands of sensors, new sensor informatics has to be developed. The focus of our on-going research is to develop techniques and algorithms that would utilize this musculoskeletal system effectively; thus creating the intelligence for such a large-scale autonomous structure. To achieve this level of intelligence, three major research tasks are being conducted: development of a Bio-Inspired data analysis and information extraction from thousands of sensors; development of an analytical technique for Optimal Sensory System using Structural Observability; and creation of a bio-inspired decision-making and control system. This paper is focused on the results of our effort on the first task, namely development of a Neuro-Morphic Engineering approach, using a neuro-symbolic data manipulation, inspired by the understanding of human information processing architecture, for sensor fusion and structural diagnostics.

Bio-inspired robot swarm control algorithm for dynamic environment monitoring

  • Kim, Kyukwang;Kim, Hyeongkeun;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • To monitor the environment and determine the source of a pollutant gradient using a multiple robot swarm, we propose a hybrid algorithm that combines two bio-inspired algorithms mimicking chemotaxis and pheromones of bacteria. The algorithm is implemented in virtual robot agents in a simulator to evaluate their feasibility and efficiency in gradient maps with different sizes. Simulation results show that the chemotaxis controller guided robot agents to the locations with higher pollutant concentrations, while the pheromone marked in a virtual field increased the efficiency of the search by reducing the visiting redundancy. The number of steps required to reach the target point did not increase proportionally as the map size increased, but were less than those in the linear whole-map search method. Furthermore, the robot agents could function with simple sensor composition, minimum information about the map, and low calculation capacity.

Biologically Inspired Node Scheduling Control for Wireless Sensor Networks

  • Byun, Heejung;Son, Sugook;Yang, Soomi
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.506-516
    • /
    • 2015
  • Wireless sensor networks (WSNs) are generally comprised of densely deployed sensor nodes, which results in highly redundant sensor data transmissions and energy waste. Since the sensor nodes depend on batteries for energy, previous studies have focused on designing energy-efficient medium access control (MAC) protocols to extend the network lifetime. However, the energy-efficient protocols induce an extra end-to-end delay, and therefore recent increase in focus on WSNs has led to timely and reliable communication protocols for mission-critical applications. In this paper, we propose an energy efficient and delay guaranteeing node scheduling scheme inspired by biological systems, which have gained considerable attention as a computing and problem solving technique.With the identification of analogies between cellular signaling systems and WSN systems, we formulate a new mathematical model that considers the networking challenges of WSNs. The proposed bio-inspired algorithm determines the state of the sensor node, as required by each application and as determined by the local environmental conditions and the states of the adjacent nodes. A control analysis shows that the proposed bio-inspired scheme guarantees the system stability by controlling the parameters of each node. Simulation results also indicate that the proposed scheme provides significant energy savings, as well as reliable delay guarantees by controlling the states of the sensor nodes.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

A Novel Bio-inspired Trusted Routing Protocol for Mobile Wireless Sensor Networks

  • Zhang, Mingchuan;Xu, Changqiao;Guan, Jianfeng;Zheng, Ruijuan;Wu, Qingtao;Zhang, Hongke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.74-90
    • /
    • 2014
  • Routing in mobile wireless sensor networks (MWSNs) is an extremely challenging issue due to the features of MWSNs. In this paper, we present a novel bio-inspired trusted routing protocol (B-iTRP) based on artificial immune system (AIS), ant colony optimization (ACO) and Physarum optimization (PO). For trust mechanism, B-iTRP monitors neighbors' behavior in real time and then assesses neighbors' trusts based on AIS. For routing strategy, each node proactively finds routes to the Sink based on ACO. When a backward ant is on the way to return source, it senses the energy residual and trust value of each node on the discovered route, and calculates the link trust and link energy of the route. Moreover, B-iTRP also assesses the availability of route based on PO to maintain the route table. Simulation results show how B-iTRP can achieve the effective performance compared to existing state-of-the-art algorithms.

Design of an OMNeT++ based Parallel Simulator for a Bio-Inspired System and Its Performance on PC-Clusters (생태계 모방 시스템을 위한 OMNeT++ 기반 병렬 시뮬레이터의 설계 및 PC 클러스터 상에서의 성능 분석)

  • Moon, Joo-Sun;Nang, Jong-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.9
    • /
    • pp.416-424
    • /
    • 2007
  • The Bio-Inspired system is a computing model that emulates the objects in ecosystem which are evolving themselves and cooperate each other to perform some tasks. Since it could be used to solved the complex problems that have been very difficult to resolve with previous algorithms, there have been a lot of researches to develop an application based on the Bio-Inspired system. However, since this computing model requires the process of evolving and cooperating with a lot of objects and this process takes a lot of times, it has been very hard to develop an application based on this computing model. This paper presents a parallel simulator for a Bio-Inspired system that is designed and implemented with OMNeT++ on PC clusters, and proves its usefulness by showing its simulation performance for a couple of applications. In the proposed parallel simulator, the functions required in the ERS platform for evolving and cooperating between objects (called Ecogent) are mapped onto the functions of OMNeT++, and they are simulated on PC clusters simultaneously to reduce the total simulation time. The simulation results could be monitored with a GUI In realtime, and they are also recorded into DBMS for systematic analyses afterward. This paper shows the usefulness of the proposed system by analyzing its performances for simulating various applications based on Bio-Inspired system on PC clusters with 4 PCs.

Homing Navigation Based on Path Integration with Optical Flow (광학 흐름 기반 경로 누적법을 이용한 귀소 내비게이션)

  • Cha, Young-Seo;Kim, Dae-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.94-102
    • /
    • 2012
  • There have been many homing navigation algorithms for robotic system. In this paper, we suggest a bio-inspired navigation model. It builds path integration based on optical flow. We consider two factors on robot movements, translational movement and rotational movement. For each movement, we found distinguishable optical flows. Based on optical flow, we estimate ego-centric robot movement and integrate the path optimally. We can determine the homing direction and distance. We test this algorithm and evaluate the performance of homing navigation for robotic system.

Bio-Inspired Resource Allocation Scheme for Multi-Hop Networks (멀티홉 네트워크에서 생체모방 기반 자원할당 기법)

  • Kim, Young-Jae;Jung, Ji-Young;Choi, Hyun-Ho;Han, Myoung-Hun;Park, Chan-Yi;Lee, Jung-Ryun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2035-2046
    • /
    • 2015
  • Recently, researches on resource allocation algorithms operating in a distributed way are widely conducted because of the increasing number of network nodes and the rapidly changing the network environment. In this paper, we propose Multi-Hop DESYNC(MH DESYNC), that is bio-inspired TDMA-based resource allocation scheme operating in a distributed manner in multi-hop networks. In this paper, we define a frame structure for the proposed MH DESYNC algorithm and firing message structure which is a reference for resource allocation and propose the related operating procedures. We show that MH DSYNC can resolve the hidden-node problem effectively and verify that each node shares resources fairly among its neighboring nodes. Through simulation evaluations, it is shown that MH DESYNC algorithm works well in a multi-hop networks. Furthermore, results show that MH DESYNC algorithm achieves better performance than CSMA/CA algorithm in terms of throughput.

An Experimental Comparison of Feature Subset Selection Methods using Bio-Inspired Algorithms (생태계 모방 알고리즘을 이용한 특징 선택 방법들의 성능 비교 분석에 대한 연구)

  • Yun, Chulmin;Yang, Jihoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.27-29
    • /
    • 2007
  • 패턴 인식 문제를 푸는데 있어 특징 선택을 해주는 것은 패턴 인식의 성능 향상을 위해 중요한 과정 중 하나이다. 본 연구에서는 대표적인 생태계 모방 알고리즘 2 가지를 선택하여 특징 선택 문제에 적용하여 보고, 그 성능을 비교 분석하였다. 데이터의 특징을 줄여주는 기능과 패턴 인식 성능의 향상 여부를 중심으로 평가하였으며, 이를 통해 생태계 모방 알고리즘이 특징 선택 문제에 효과적으로 사용될 수 있는지에 대해 논의해보고, 두 방법의 장단점과 특징에 대해 생각해 본다.

  • PDF