• Title/Summary/Keyword: Bio-fuel

Search Result 343, Processing Time 0.038 seconds

A Study on the Greenhouse Heating of Solar Energy - Latent Heat Storage System - (태양열-잠열축열시스템의 온실보온특성)

  • 송현갑;류영선
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.14-20
    • /
    • 1992
  • For the high quality and low cost agricultural crops in greenhouse cultivation, it is necessary to use natural energy as much as possible. In order to reduce the fossil fuel consumption and maximize the solar energy utilization in greenhouse heating, a latent heat storage material was developed as a relatively highly concentrative solar energy storage medium. And a solar energy-latent heat storage system was designed and constructed. The experimental research on greenhouse heating effect of the system was performed.

  • PDF

Study on the Fluidized-Bed Drying Characteristics of Sawdust as a Raw-Material for Wood-Pellet Fuel

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.30-36
    • /
    • 2006
  • Wood fuel must be dried before combustion to minimize the energy loss. Sawdust of Japanese red pine was dried in a batch type fluidized-bed to investigate the drying characteristics of sawdust as a raw material for bio-fuel. The minimum fluidization air velocity was increased as particle size was increased. It took about 21 minutes and 8 minutes to dry 0.08 m-deep bed of particles with average particle size of 1.3 mm from 100% to 10% moisture content at air temperature of $20^{\circ}C$ and $50^{\circ}C$, respectively.

A Study on the Characteristics of Exhaust Emissions by Biodiesel Blend Waste Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐혼합유의 배기배출물특성에 대한 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.90-95
    • /
    • 2015
  • Recently worldwide concern and research is being actively conducted on green energy which can reduce environmental pollution. A plant such as the natural rapeseed oil, soybean oil, palm, etc. is used as a bio source in home and industry. Biofuels is a sustainable fuel having economically benefits and decreasing environmental pollution problems caused due to fossil fuel, and it can be applied to the conventional diesel engine without changing the existing institutional structure. Waste vegetable oil contains a high cetane number and viscosity component, the low carbon and oxygen content. A lot of research is progressing about the conversion of waste vegetable oil as renewable clean energy. In this study, waste oil was prepared to waste cooking oil generated from the living environment, and applied to diesel engine to confirm the possibility and cost-effectiveness of biodiesel blend waste oil. As a result, brake specific fuel consumption and NOx was increased, carbon monoxide and soot was decreased.

A Study on Sprny and Combustion Characteristics by Temperature of Biodiesel Fuel (바이오디젤 연료온도에 따른 분무 및 열소특성에 관한 연구)

  • Baik, Doo-Sung;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.152-157
    • /
    • 2008
  • The biodiesel becomes one of the favorite alternative fuel applied to diesel engines. This research aims to understand the physics of spray and combustion characteristics of a biodiesel fuel in a constant volume chamber. For spray visualization, biodiesel was injected into a combustion chamber and a high speed camera was applied at various combustion conditions. To investigate heat-release rates and flame propagations, spark was ignited on a hydrogen fuel for the premixed combustion and then biodiesel was injected directly. In addition, parametric study was made by various geometries of combustion chambers and temperatures of fuels and injection pressures. This technology may contribute to improve the performance of bio-diesel engine and reduce emissions in future.

Fabrication and Properties Analysis of MEA for PEMFC (고분자전해질 연료전지용 MEA 제조 및 특성평가)

  • Cho Y.H.;Cho Y.H.;Park I.S.;Sung Y.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.230-234
    • /
    • 2005
  • Fabrication of MEA is important factor for proton exchange membrane fuel cell (PEMFC). MEA of PEMFC with hot pressing and direct coating method were prepared, and performances were evaluated and compared each other. The effect of MEA preparation methods, hot pressing methods and direct coating methods, on the cell performance was analyzed by impedance spectroscopy and SEM. The performance of PEMFC with direct coating method was better than with hot pressing method because membrane internal resistance and membrane-interfacial resistance were reduced by elimination of hot pressing process in MEA fabrication. In addition the micro structure of MEA with direct coating method reveals uniform interface between membrane and catalyst layer.

  • PDF

Development of Transportation Bio-energy and Its Future (수송용 바이오에너지 개발과 미래)

  • Chung, Jay-H.;Kwon, Gi-Seok;Jang, Han-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Negative environmental consequences of fossil fuels and the concerns about their soaring prices have spurred the search for alternative energy sources. While other alternative energies-like solar, wind, geothermal, hydroelectric, and tidal-offer viable options for electricity generation, around 40% of total energy consumption requires liquid fuels like gasoline or diesel fuel. This is where bio-energy/biofuels is especially attractive, where they can serve as a practical alternative to oil. The production of liquid biofuels for transportation will depend upon a stable supply of large amount of inexpensive cellulosic biomass obtained on a sustainable basis. This paper reviewed development status of transportation bio-energy for vehicles, technical barriers to the production of cellulosic ethanol, and the global future of bio-diesel and ethanol production.

Fuel Characteristics of Quercus variabilis bio-oil by Vaccum Distillation (감압증류에 의한 굴참나무 바이오오일의 연료 특성 변화)

  • Chea, Kwang-Seok;Jo, Tae-Su;Lee, Soo-Min;Lee, Hyung Won;Park, Young-Kwon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.75-82
    • /
    • 2016
  • The technology of fast pyrolysis is regarded as a promising route to convert lignocellulose biomass into bio-oil which can be upgraded to transportable fuels and high quality chemical products. Despite these promises, commercialization of bio-oil for fuels and chemicals production is limited due to its notoriously undesirable characteristics, such as high and changing viscosity, high water and oxygen contents, low heating value and high acidity. Therefore, in this study quality improvement of bio-oil through vaccum distillation had been targeted. A 600 g of cork oak(Quercus variabilis) which grounded 0.8~1.4 mm was processed into bio-oil via fast pyrolysis for 1.64 seconds at $465^{\circ}C$ and temperature of vaccum distillation(100hPa) was designed to control, $40^{\circ}C$, 50, 60, 70, and 80 for 30min. Bio-oil, biochar, and gas of pyrolytic product were produced to 62.6, 18.0 and 19.3 wt%, respectively. The water content, viscosity, HHV(Higher Heating Value) and pH of bio-oil were measured to 0.9~26.1 wt%, 4.2~11.0 cSt 3,893~5,230 kcal/kg and 2.6~3.0, respectively. Despite these quality improvement, production was still limited due to its notoriously undesirable characteristics, therefore continous quality improvement will be needed in order to use practical fuel of bio-oil.

Production of Bio-energy from Marine Algae: Status and Perspectives (해양조류로부터 바이오에너지 생산 : 현황 및 전망)

  • Park, Jae-Il;Woo, Hee-Chul;Lee, Jae-Hwa
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.833-844
    • /
    • 2008
  • Bio-energy offers the opportunity to lessen fossil fuel consumption. Energy derived from solar, wind, hydroelectric, geothermal, and biomass sources are considered renewable. Because most forms of bio-energy are derive deither directly or indirectly from the sun, there is an abundant supply of renewable energy available, unlike fossil fuels. The use of bio-energy also provides environmental, economic and political benefits. Bio-energy can be produced from a marine source such as biomass provides a $CO_2$ neutral, non-polluting form of energy. In this paper, the potential of marine biomass is increasingly discussed, given the size of the resource in that more than three quarters of the surface of planet earth is covered by water.

Effect of Flocculant Injection Ratio in NIR (Near-Infrared Ray) Drying for BIO-SRF (Solid Recovered Fuel) of Swage Sludge (하수슬러지 BIO-SRF (Solid Recovered Fuel) 생산을 위한 NIR (Near Infrared Ray) 건조시 응집제 주입비율이 미치는 영향)

  • Lee, Kang-min;Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.30 no.2
    • /
    • pp.135-143
    • /
    • 2021
  • This study executed evaluation of drying characteristics based on the polymer injection rate (8%, 10% and 12%) and the drying method[NIF(near-infrared ray). According to this study analyzed VS, VS/TS, and calorific value compared with 'the auxiliary fuel standard of the thermoelectric power plant and the combined heat & power plant'. The results are as follows. In the case of NIR, the VS was slightly changed at the early stage of the material preheating period and the constant drying rate period with low moisture evaporation. But VS reduction was shown higher as moisture was dried. In the case of non-digested sludge with high VS content, the VS reduction rate by drying was shown lower than that of digested sludge. As the flocculant injection rate increased, the VS loss due th drying was found to be small. Also, the higher the flocculant injection rate was the longer the drying time. Especially, in the case of the NIR drying equipment, as the moisture content of sewage sludge decreased(moisture content 20~40%), the loss of net VS also showed a tendency to increase sharply. It is shown that the high calorific value according to the drying time of the non-digested sludge was changed from 590 kcaℓ/kg to 3,005 kcaℓ/kg and from 539 kcaℓ/kg to 2,796 kcaℓ/kg.