• Title/Summary/Keyword: Bio-film

Search Result 440, Processing Time 0.033 seconds

Greenhouse Environment and Growth of Green Pepper (Capsicum annuum L.) in Greenhouse Covered with CEM BIO Film (CEM BIO Film 피복시설의 환경특성과 풋고추 생육)

  • Chun, Hee;Kim, Kyung-Je;Kwon, Young-Sam;Kim, Hyun-Hwan;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.161-165
    • /
    • 2000
  • Spectroradiometric light transmittance from 300 to 1,100nm in the greenhouse covered with the CEM BIO polyethylene film was greater than that in the greenhouse covered with polyethylene film (control). As a whole, solar radiation transmittance into greenhouse was a half level, due to shades caused by double layer covering, frame and equipment. Net radiation energy emitted throughout surface of the greenhouse covered with CEM BIO polyethylene film was 5,424.5W.m$^{-2}$ , which was lower by 2.9% as compared to that of the greenhouse covered with polyethylene film. Photosynthetically active radiation from 400 to 700nm of the greenhouse covered with CEM BIO polyethylene film was 3,861.2W.m$^{-2}$ , which was higher by 3.8% as compared to hat of the greenhouse covered with polyethylene film. Accumulated minimum air temperature from Oct. 7, 1997 to Oct. 16, 1997 of the greenhouse covered with CEM BIO polyethylene film was 100.5$^{\circ}C$, which was higher by 2.5$^{\circ}C$ as compared to that of the greenhouse covered with polyethylene film. As results, height, stem diameter, leaf count, leaf area, fresh weight and dry weight of green pepper plants and canopy production structure measured at 30 days after transplanting were enhanced. Mean fruit weight n the greenhouse covered with CEM BIO polyethylene film was 11.28 g and 1.25 g greater as compared to that in the greenhouse covered with polyethylene film, due to increased fruit diameter and flesh thickness. Percent marketable fruits produced in the greenhouse covered with CEM BIO polyethylene film were 96.1%, and was greater by 2.7% thant that of the greenhouse covered with polyethylnee film due to decreased infection, sterility, severe curve and twisted fruits. The green pepper yield of the greenhouse covered with CEM BIO polyethylene film from Nov. 19, 1997 to Feb. 3, 1998 was greater by 974 kg per hectare than that of the greenhouse covered with polyethylene film, but the total fruit had no difference.

  • PDF

Feasibility Study of Diffusion Film for the Light Guide of Gamma Ray Imaging System

  • Cha, Hyemi;Min, Eungi;Lee, Kisung;Jung, Young-Jun;Lee, Hakjae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.124-128
    • /
    • 2017
  • A light guide improves the spatial resolution of a gamma ray imaging system by diffusing the scintillation light. Similarly, light diffusion film, which has been applied to flat-panel-display engineering, spreads the light from the light guide panel. In this study, we adopted light diffusion film for the light guide of a gamma ray imaging system, and evaluated its diffusion characteristics. We compared the light diffusion performance of the film to an ordinary acrylic plate. As a result, the diffusion film widely spreads scintillation light. As for the thickness of the light guide, we acquired more distinct images with three films overlapped than with an acrylic plate. We expect light diffusion film to be a promising candidate for light guides in gamma ray imaging systems.

A Study on the Removal Characteristics of Dissolved Organic and Ammonia Compounds in PFR of Aerated Submerged Bio-film (ASBF) Reactor (PFR 공정의 ASBF 구조에 의한 유기물제거와 질산화의 영향에 대한 연구)

  • Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1265-1271
    • /
    • 2008
  • Aerated submerged bio-film (ASBF) pilot plant has been developed. The presented studies optimized an inexpensive method of enhanced wastewater treatment. The objectives of this research were to describe pilot scale experiments for efficient removal of dissolved organic and nitrogen compounds by using ASBF reactor in plug-flow reactor (PFR) and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophs and autotrophs in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. This direct gas-phase contact should increase the oxygen transfer rate into the bio-film, as well as increase the micro-climate mixing of water, nutrients, and waste products into and out of the bio-film. This research also investigated the efficiency of dissolved organic matter and ammonia nitrogen removals in the ASBF. As it was anticipated, nitrification activity was highest during periods when the flow rate was lower, but it seemed to decline during times when the flow rate was highest. And ammonia nitrogen removal rates were more sensitive than dissolved organic matter removal rates when flow rates exceeded 2.2 L/min.

Effects of Bio-degradable Mulches on the Yield of Maize and the Density of Soil Microbe

  • Lim, Soo-Jeong;Lee, Min-Bum;Kim, Se-Won;Kim, Jang-Su;Heo, Su-Jeong;Choi, Seung-Chul;Yoon, Byeong-Sung;Kim, In-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.375-380
    • /
    • 2016
  • The use of polyethylene film has a problem such as increasing rural environmental contamination, collection costs and farmers' workload. The objective of this study was to evaluate bio-degradable films in terms of yield of maize and soil environment. Treatments were bio-degradable film A (BDF A), bio-degradable film B (BDF B), high density polyethylene (HDPE), and non-mulched (NM) soil. Daily mean values of soil temperature (10 cm depth) under BDF A, BDF B, and HDPE were higher than in NM soil by 2.2, 2.8, $3.1^{\circ}C$ respectively. In the mulching cultivation of maize, bio-degradable film began to degrade from 50~60days after the planting. The degradation was much progressed in the harvest time and almost decomposed in the following spring. The weight of ear of maize was not shown significantly by mulching treatments. There were little changes of soil chemical properties for the bio-degradable film mulching. After using bio-degradable films, the contents of biomass-C and dehydrogenase activity increased from 92 to $137{\sim}147mg\;kg^{-1}$, and from 87 to $123{\sim}168mg\;kg^{-1}$ respectively.

Studies on the Bio-degradability and Characteristics of Mulching Films Containing Rice By-products Applied to Upland Crops (벼 부산물을 함유한 생분해성 멀칭비닐의 포장 재배조건에서의 특성 및 분해력 연구)

  • Han, Sang-Ik;Kang, Hang-Won;Jang, Ki-Chang;Seo, Woo-Duck;Oh, Seong-Hwan;Ra, Ji-Eun;Lee, Hyeong-Un;Chung, Mi-Nam;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • The main challenges for the development of agricultural bio-degradable mulching film concern the degradation during the lifetime of cultivated crops. A set of rice by-product (rice-hull and rice-bran) based bio-degradable mulching films was developed and tested, following the measurement of standard bio-degradability rate and adaptability in a large scale field experiment. The standard bio-degradability of bio-film passed the KS (Korea standard) regulation. The result of mechanical analysis of bio-degradable mulching film presented a higher mechanical strength and elongation rate compared with polyethylene film. In addition, bio-film could be degraded into fragments within 4 months under the field condition of several upland crops. Bio-degradable mulching film indicated great potential as a new source of agricultural bio-degradable material.

The Effect of Extraction Conditions and Film Side on the Molecular Conformation of Silk Sericin Film

  • Jo, Yoon Nam;Bae, Do Gyu;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • In this study, silk sericin films were prepared using different extraction methods, and the molecular conformation of sericin was examined using Fourier-transform infrared spectroscopy with attenuated total reflection geometry. Additionally, the effect of the film side (air-facing side or plate-facing side) on the molecular conformation of the sericin films was investigated. Interestingly, the molecular conformation of the sericin film depended on the film side. The molecular conformation of air-facing side of the sericin film was significantly influenced by extraction solution and time. The ${\beta}$-sheet crystallization and the crystallinity index of the sericin film markedly increased with an increase in the extraction time in hot water. The order of the crystallinity indices for the sericin films obtained with different extraction solutions was as follows: citric acid solution > urea solution >> hot water. In contrast, no remarkable differences were observed in the molecular conformation of the plate-facing side of the sericin film after extraction in hot water for different time periods. Urea and citric acid solution extractions showed remarkably higher crystallinity indices for sericin than those obtained after hot water extraction. However, no significant differences were observed in the crystallinity index of sericin between urea and citric acid solution extraction in plate-facing side of the film.

Removal Characteristics of COD and Nitrogen by Aerated Submerged Bio-film(ASBF) Reactor (ASBF 생물반응기를 이용한 COD 및 질소 제거특성)

  • Choi, Young-Ik;Jung, Byung-Gil;Son, Hee-Jong;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.997-1002
    • /
    • 2007
  • The objectives of this research are to remove dissolved organic matter and nitrogen compounds by using aerated submerged bio-film(ASBF) reactors in batch systems and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophic and autotrophic bacteria in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. These structures are designed to encourage the growth of a nitrifying bacterial bio-film on a submerged surface. Specially, the effects of cold temperatures on the dissolved organic matter and ammonia nitrogen performance of the ASBF pilot plant was investigated for the batch system. It is anticipated thai the ASBF would be used for a design of biological treatment for removing of dissolved organic matter and nitrogen compounds in new wastewater treatment plants as well as existing wastewater treatment plants.

Measurement of Water Vapor Permeability of Bio-polymer Films (생고분자 필름의 투습도 측정)

  • Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.37-46
    • /
    • 1999
  • Water vapor permeability of films is commonly calculated from the water vapor transmission rate of the film measured using a permeability cup method which is essentially a gravimetric method. This method was originally developed for petroleum based plastic films with low water vapor permeability. In the case of hydrophilic bio-polymer films, the resistance caused by a stagnant air layer, which is developed between the underside of the film mounted on the cup and the surface of the desiccant saturated salt solution or distilled water, can be significant and, if neglected, ran lead to underestimation of water vapor transmission rates. Therefore, it is necessary to correct water vapor transmission rate data to accurately estimate the water vapor permeability of bio-polymer films.

  • PDF

Development of Oxo-biodegradable Bio Film by Using Biodegradable Catalyst (생분해 촉매제를 이용한 산화생분해 바이오 필름 개발)

  • Rhee, Jin-Kyu;Jung, Dong Seok;You, Young-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.127-134
    • /
    • 2016
  • In this study, Biodegradable masterbatch (M/B) was prepared by different kinds and content of biodegradable catalysts added to oxo biodegradable plastics. The bio film was prepared by adding biodegradable M/B to the polyethylene pellet, and the change of physical properties by UV and heat treatment and the stability as food packaging material were confirmed. As a result of the physical property change, Fe salt and Al salt bio film was superior to Ni salt bio film about a decrease in physical property. However, considering the raw material cost and industrial availability, M/B containing Fe salt was selected and additional experiments were conducted by concentration. The bio films prepared with Fe salt M/B 1.0, 1.5 and 2.0 wt% showed excellent physical properties.

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst (바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발)

  • You, Young-Sun;Kim, Young-Tae;Park, Dae-Sung;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.