• 제목/요약/키워드: Bio-diesel

Search Result 161, Processing Time 0.027 seconds

A Study on the Improvement of the Circulation Dryer for Rapeseed (순환식 유채건조기 개량 연구)

  • Kim, You-Ho;Choi, Hi-Seok;Kwon, Jin-Kyung;Cho, Kwang-Hwan;Yoon, Hong-Sun;Kim, Dong-Sun
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.390-395
    • /
    • 2008
  • Current high oil price and the agreement on global climate change prevention have increased worldwide investment and research on renewable energy. In Korea, development of a rapeseed dryer for bio-diesel production has been started in 2007. Usually, rapeseeds are harvested in early summer, because rice cultivation is followed right after rapeseed harvesting. Early harvest and bad summer results in highly moistured rapeseed and development of artificial drying system is required to dry great amount of rapeseed that couldn't be processed by sun drying alone. The rapeseed dryer was modified from an existing circulation type grain dryer. Modification of the dryer was performed with the aid of CFD simulation. Drying test showed that drying rate of rapeseed was 1.51%/h and germination rate reduction was 4.5%p for the drying temperature of $60^{\circ}C$.

Oxidation Characteristics of Biodiesel and Its Blend Fuel I (바이오디젤 및 바이오디젤 혼합 연료의 산화 특성 I)

  • Jung, Chung-Sub;Dong, Jong-In
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.284-290
    • /
    • 2007
  • Biodiesel and its blend fuels from soybean oil were characterized for their oxidation to apply automobile fuel from the analysis of FAME (fatty acid methyl ester) and chemical properties. Biodiesel produced from soybean oil contained unsaturated fatty acids (> 85 wt%) such as oleic acid, linoleic acid, and linolenic acid. Especially, polyunsaturated fatty acids such as linoleic acid and linolenic acid containing active methyl radical were over 60 wt%. It is believed that linoleic acid and linolenic acid cause oxidation. Linoleic acid and linolenic acid during oxidation were major reactants, and compounds with the carbon number having around 36 (boiling point of about $500^{\circ}C$) were produced from those of radical autoxidation.

Fuel properties of biodiesel produced from beef-tallow and corn oil blends based on the variation in the fatty acid methyl ester composition

  • Woo, Duk Gam;Kim, Tae Han
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.941-953
    • /
    • 2019
  • Biodiesels are being explored as a clean energy alternative to regular diesel, which causes pollution. In this study, the optimum conditions for producing biodiesel (BD) by combining beef tallow, an animal waste resource with a high saturated fatty acid content, and corn oil, a vegetable oil with a high unsaturated fatty acid content, were investigated, and the fuel properties were analyzed. Furthermore, Multivariate Analysis of Variance (MANOVA) was used to verify the optimum conditions for producing biodiesel. The influences of control factors, such as the oil blend ratio and methanol to oil molar ratio, on the fatty acid methyl ester and biodiesel production yield were investigated. As a result, the optimum condition for producing blended biodiesel was verified to be tallow to corn oil blend ratio of 7 : 3 (TACO7) and a methanol to oil molar ratio of 14 : 1. Moreover, the interaction between the oil blend ratio and the methanol to oil molar ratio has the most crucial effects on the production of oil blended biodiesel. In conclusion, the analysis results of the fuel properties of TACO7 BD satisfied the BD quality standard, and thus, the viability of BD blended with waste tallow as fuel was verified.

Influence on centrifugal force control in a self-driven oil purifier

  • Jung, Ho-Yun;Kwon, Sun-Beom;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1251-1256
    • /
    • 2014
  • The use of lubrication oil is of many purposes and one among them is to drive the engine mounted on a ship. Hence the supply of clean lubrication oil is important. And an oil purifier is one of key components in marine diesel engines. At present, the element type full-flow oil filter has been widely used for cleaning the engine oil. The self-driven centrifugal oil purifier is a device which is used to remove the impurities in lubrication oil using a jet flow. The flow characteristics and the physical behaviors of particles in this self-driven oil purifier were investigated numerically and the filtration efficiencies were evaluated. For calculations, a Computational Fluid Dynamics method is used and the Shear Stress Transport turbulence model has been adopted. The Multi Frames of Reference method is used to consider the rotating effect of the flows. The influence of centrifugal forcehas been numerically investigatedto improve filtration efficiency of tiny particles. As a result of this research, it was found that the particle filtration efficiency using the only center axis rotating and outer wall rotating system are higher than that of the fully rotating system in the self-driven oil purifier.

Transesterification of Jatropha Oil over Ceria-Impregnated ZSM-5 for the Production of Bio-Diesel

  • Bhagiyalakshmi, Margandan;Vinoba, Mari;Grace, Andrews Nirmala
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3059-3064
    • /
    • 2013
  • In this study transesterification of Triglycerides (TG) from Jatropha curcas oil (JCO) with methanol for production of biodiesel was investigated over cerium impregnated ZSM-5 catalysts. NaZSM-5 was synthesized in an alkaline medium and impregnated with cerium oxide by wet method using cerium nitrate as a source for cerium. They were characterized by X-ray diffraction (XRD), Thermogravimeteric analysis (TGA), $CO_2$-temperature programmed desorption, and $N_2$ adsorption/desorption analysis. XRD analysis showed decrease in intensity of the patterns with the increase in the ceria loading but crystallization of ceria to larger size is an evident for 10 and 15% loading. The optimal yield of transesterification process was found to be 90% under the following conditions: oil to methanol molar ratio: 1:12; temperature: $60^{\circ}C$; time: 1 h; catalyst: 5 wt %. Here the yield of fatty acid methyl ester (FAME) was calculated through $^1H$ NMR analysis. The investigation on catalyst loading, temperature, time and reusability illustrated that these ceria impregnated NaZSM-5's were found to be selective, recyclable and could yield biodiesel at low temperature with low methanol to oil ratio due to the presence of both Lewis and Bronsted basicity. Hence, from the above study it is concluded that ceria impregnated ZSM-5 could be recognized as a potential catalysts for biodiesel production in industrial processes.

Design of a Cylinder Valve Solenoid for a CNG Vehicle using Electromagnetic Field Analysis (전자기장 해석을 이용한 CNG 차량 용기용 밸브 솔레노이드의 설계)

  • Lee, Hyo-Ryeol;Ahn, Jung-Hwan;Shin, Jin-Oh;Kim, Hwa-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • Growing concerns regarding environmental pollution have increased the demand for green vehicles. Green vehicles include electric vehicles, compressed natural gas vehicles, fuel cell vehicles, and vehicles running on fuels such as bio diesel or an ethanol blend. CNG vehicles are equipped with a cylinder valve installed in a high-pressure vessel to control the CNG flow. For this purpose, the optimum design of cylinder valve solenoid is necessary to secure at driving a CNG vehicle. In this study, electromagnetic field analysis to ensure the reliable operation of the solenoid was conducted by using a Maxwell V15. The electromagnetic field analysis was performed by magnetostatic technique according to distance between magnetic poles in order to predict the attraction force. Finally, the attraction force was validated through comparison between the Maxwell results and the measurement results. From the results, the error of attraction force was found to be 2.85 N to 6.5 N under the testing conditions.

A Study on Droplet Distribution of Bio Diesel Fuels Using Immersion Sampling Method (액침법에 의한 바이오디젤유의 액적분포에 관한 연구)

  • Kim, M.S.;Doh, H.C.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.5-10
    • /
    • 2006
  • The purpose of this study is to measure the droplet distribution and Sauter mean diameter(SMD) of biodiesel fuel, using the immersion sampling method. This method involves using an optical microscope and a CCD camera, to take an image of the droplets. These images are then measured by using a 'Sigma Scan' processing program. The results of the above experiment are summarized as followed ; (1) There can be as much as a 10% error rate when measuring the diameter of these droplets, using the image processing method and the naked eye. (2) The result of droplet size distribution test, TVO(transesterified vegetable oil) big size droplet distribution were increased at ambient pressure $6kg/cm^2$. (3) When ambient pressure increased $6kg/cm^2$ above, SMD variation of TVO and UVO(used vegetable oil) 30 are small. (4) On Rosin-Rammler analysis, droplets size distribution of UVO(used vegetable oil) 30 uniform more than TVO 20 on ambient pressure $1kg/cm^2$.

  • PDF

Current status of tissue culture and genetic transformation systems in oilseed rape plants (Brassica napus L.) (유채 조직배양 및 형질전환 연구동향)

  • Lee, Sang-Il;Kim, Yun-Hye;Lee, Dong-Hee;Lee, Yu-Mi;Park, Seo-Jun;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.379-387
    • /
    • 2010
  • Oilseed rape (Brassica napus L.) is an important crop due to its high oil content in the seed. Recently, the demand for the improvement of crop for biodisel energy source is increased as oil prices in the world has increased dramatically. Until now, oilseed rape breeding was carried out by cross-hybridization between different varieties and related germplasms. However, like as many other crops, the application of tissue culture and gene transformation systems has been introduced into oilseed rape breeding program including the development of transgenic canola plants. In this study, we reviewed a history of tissue culture and genetic transformation research in oilseed rape plants and indicated some important aspects for the production of transgenic oilseed rape plants.

A Numerical Analysis for High Performance on DME High Pressure Fuel Pump Using Taguchi Method (Taguchi Method 을 이용한 DME 고압 연료 펌프에 대한 고성능 수치 해석)

  • SAMOSIR, BERNIKE FEBRIANA;CHO, WONJUN;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.636-641
    • /
    • 2021
  • Using numerical analysis, various factors influencing the performance development of high-pressure pumps for Dimethyl Ether (DME) engines were identified and the impact of each factor was evaluated using Taguchi method. DME fuels are more compressive than diesel fuels and have the lower heat generation, so it is necessary to increase the size of the plunger and speed (RPM) of the pump as well. In addition, it is necessary to change the shape and design of control valve to control the discharge flow and pressure. In this study, various variables affecting the performance and flow rate increase of high-pressure pumps for DME engines are planned using Taguchi method, and the best design method is proposed using correlation of the most important variables. As a result, we were able to provide the design value needed for a six-liter engine and provide optimal conditions. The best combination factors to optimize the flow rate at RPM 2,000 and diameter plunger with 20 mm. The regression equation can also be used to optimize the flow rate; -8, 13+0, 2552 RPM +54, 17 diam. Plunger.

CO2 Emission Analysis from Horticultural Facilities & Agricultural Machinery for Spread of New and Renewable Energy in Rural-type Green Village (농촌형 녹색마을에 신재생에너지 보급을 위한 시설재배 및 농업기계의 CO2 배출량 분석)

  • Kim, J.G.;Ryou, Y.S.;Kang, Y.K.;Kim, Y.H.;Jang, J.K.;Kim, H.T.;Seo, K.W.;Lee, S.K.;Cho, H.J.;Kang, J.W.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.86-92
    • /
    • 2011
  • In order to reduce dependence on the fossil fuels and $CO_2$ gas emission in farming activities, the government has pushed ahead with making the self-sufficiency of farming energy up 40% level in green villages. The objectives of this study are to survey the energy consumption of horticultural facilities or agricultural machineries, and to analyze the reduced $CO_2$ gas emission level from fossil fuel to bio-diesel fuel. For the implement of this study, it is necessary to analyze the energy consumption level in the various sector of farming activities, and available renewable energy sources should be selected. Annual total $CO_2$ gas emission in the tillage farming sector was analyzed as $5,667,258\;t-CO_2$ and that in the horticultural facilities occupied $4,932,607\;t-CO_2$, while the $CO_2$ gas emission level of diesel fuel was $3,105,707\;t-CO_2$, and that of the heavy oil showed $1,370,578\;t-CO_2$. The average $CO_2$ gas emission level of horticultural facilities in the country was analyzed as $29,418\;t-CO_2/ha$. Among the total energy consumption of agricultural machineries, tractor used 284,763kL, power tiller spent 221,314 kL, grain drier consumed 145,524kL and combine tractor expend 72,537kL. From the comparison of $CO_2$ gas emission level between fossil fuel and bio-diesel fuel for the horticultural facilities or agricultural machinery in G-City, Jeonbuk Province, the $CO_2$ gas emission level can be reduced by 7% through replacing the fuel from fossil to biodiesel.