• Title/Summary/Keyword: Bio-char

Search Result 31, Processing Time 0.019 seconds

Mechanical Properties of Mortar Containing Bio-Char From Pyrolysis (바이오숯을 함유한 모르타르의 역학적 특성)

  • Choi, Won Chang;Yun, Hyun Do;Lee, Jae Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.67-74
    • /
    • 2012
  • Bio-char, obtained from biomass as a by-product of the pyrolysis process, is used successfully as a soil amendment and carbon sequester in this limited study. Recent and active research from literatures has extended the application of bio-char in the industry to promote sustainability and help mitigate the negative environmental impacts caused by carbon emissions. This study aims to investigate the feasibility of high-carbon bio-char as a carbon sequester and/or admixture in mortar and concrete to improve the sustainability of concrete. This paper presents the experimental results of an initial attempt to develop a cement admixture using bio-char. In particular, the effects of the water retention capacity of bio-char in concrete are investigated. The chemical and mechanical properties (e.g., the chemical components, microstructure, concrete weight loss, compressive strength and mortar flow) are examined using sample mortar mixes with varying replacement rates of cement that contains hardwood bio-char. The experimental results also are compared with mortar mixes that contain fly ash as the cement substitute.

Effect of bio-char application combined with straw residue mulching on soil soluble nutrient loss in sloping arable land

  • Gu, Chiming;Chen, Fang;Mohamed, Ibrahim;Brooks, Margot;Li, Zhiguo
    • Carbon letters
    • /
    • v.26
    • /
    • pp.66-73
    • /
    • 2018
  • We assessed the effects of combining bio-char with straw residue mulching on the loss of soil soluble nutrients and citrus yield in sloping land. The two-year study showed that straw residue mulching (ST) and bio-char application combined with straw residue (ST+BC) can significantly reduce soil soluble nutrient loss when compared with the control treatment (CK). The comparative volume of the soil surface runoff after each of the treatments was as follows: CK > ST > ST + BC. Compared with the CK, the runoff volume of the ST was reduced by 13.6 % and 8.5 % in 2014 and 2015, respectively. Compared with the CK, combining bio-char with the ST application reduced the loss of soluble nitrogen and improved the soil total nitrogen content reaching a significant level in 2015. It dramatically increased the soil organic matter content over the two year period (36.3% in 2014, 50.6% in 2015) as well as the carbon/nitrogen ratio (C/N) (16.6% in 2014 and 39.3% in 2015). Straw mulching combined with bio-char showed a trend for increasing the citrus yield.

Nitrogen Transformation in Soil Cooperated with Organic Composts and Bio-char During Corn (Zea mays) Cultivation (옥수수 재배 시 퇴비 및 바이오차 시용 토양에서 질소 이동 동태)

  • Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • This study were conducted to evaluate the N mineralization and nitrification rates and to estimate the losses of total carbon and nitrogen by runoff water in soils cooperated with organic composts and bio-char during corn cultivation. For the experiment, the soil texture used in this study was clay loam, and application rates of chemical fertilizer and bio-char were $230-107-190kg\;ha^{-1}$($N-P_2O_5-K_2O$) as recommended amount after soil test and 0.2% to soil weight. The soil samples were periodically taken at every 15 day intervals during the experimental periods. The treatments were consisted of cow compost, pig compost, swine digestate from aerobic digestion system, and their bio-char cooperation. For N mineralization and nitrification rates, it was shown that there were generally low in the soil cooperated with bio-char as compared to the only application plots of different organic composts except for 47 days after sowing. Also, they were observed to be highest in the application plot of swine digestate from aerobic digestion system. For loss of total carbon by run-off water, it was ranged from 1.5 to $3.0kg\;ha^{-1}$ in the different organic compost treatment plots. However, Loss of total carbon with bio-char could be reduced at $0.4kg\;ha^{-1}$ in PC treatment plot. Also, with application of bio-char, total nitrogen was estimated to be reduced at 4.2 (15.1%) and $3.8(11.8%)kg\;ha^{-1}$ in application plots of pig compost and swine aerobic digestate, respectively.

Influence of Reaction Temperature on Bio-oil Production from Rice Straw by the Pyrolysis (볏짚으로부터 바이오오일 생산에 대한 열분해 반응온도의 영향)

  • Kang Bo-Sung;Park Young-Kwon;Kim Joo-Sik
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.12-19
    • /
    • 2006
  • Rice straw is one or the main renewable energy sources in Korea. Bio-oil is produced from rice straw with a lab-scale equipment mainly with a fluidized bed and a char removal system. It was investigated how the reaction temperature affected the production of bio-oil and the efficiency of a char removal system. To elucidate how the temperature depended on the production of bio-oil, experiments were conducted at $466^{\circ}C,\;504^{\circ}C\;and\;579^{\circ}C$, respectively. The mass balance was established in each experiment, and the produced gas and oil were analyzed with the aid of GCs and a GC-MS system. The char removal system is composed of a cyclone and a hot filter. Tn the experiments, we observed that the production of bio-oil was decreased with temperature, and the bio-oil contained very useful chemicals.

Bio-oil Production from Rice Straw by the Catalytic Pyrolysis over Zeolites (제올라이트 촉매 열분해를 이용한 볏짚으로부터 바이오 오일 생산)

  • Choi, Jong Cheol;Ryu, Ji Hye;Kang, Bo-Sung;Kim, Joo-Sik;Jeon, Jong-Ki;Park, Young-Kwon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.382-386
    • /
    • 2006
  • Rice straw is one of the main renewable energy sources in Korea. Bio-oil is produced from rice straw with a bench-scale equipment mainly with a fluidized bed, a char removal system and zeolite catalyst. It was investigated how the zeolite catalyst affected the production of bio-oil and chemical composition of bio-oil. Compared with non catalytic pyrolysis, the catalytic pyrolysis increased the amount of gas and char but decreased the amount of oil. The water content in bio-oil increased due to deoxygenation. The aromatic compound and heating value was increased when catalytic pyrolysis was applied.u

Development of Carbon-Based Solid Acid Catalysts Using a Lipid-Extracted Alga, Dunaliella tertiolecta, for Esterification

  • Ryu, Young-Jin;Kim, Z-Hun;Lee, Seul Gi;Yang, Ji-Hyun;Shin, Hee-Yong;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.732-738
    • /
    • 2018
  • Novel carbon-based solid acid catalysts were synthesized through a sustainable route from lipid-extracted microalgal residue of Dunaliella tertiolecta, for biodiesel production. Two carbon-based solid acid catalysts were prepared by surface modification of bio-char with sulfuric acid ($H_2SO_4$) and sulfuryl chloride ($SO_2Cl_2$), respectively. The treated catalysts were characterized and their catalytic activities were evaluated by esterification of oleic acid. The esterification catalytic activity of the $SO_2Cl_2$-treated bio-char was higher ($11.5mmol\;Prod.{\cdot}h^{-1}{\cdot}gCat.\;^{-1}$) than that of commercial catalyst silica-supported Nafion SAC-13 ($2.3mmol\;Prod.{\cdot}h^{-1}{\cdot}gCat.^{-1}$) and $H_2SO_4$-treated bio-char ($5.7mmol\;Prod.{\cdot}h^{-1}{\cdot}gCat.^{-1}$). Reusability of the catalysts was examined. The catalytic activity of the $SO_2Cl_2$-modified catalyst was sustained from the second run after the initial activity dropped after the first run and kept the same activity until the fifth run. It was higher than that of first-used Nafion. These experimental results demonstrate that catalysts from lipid-extracted algae have great potential for the economic and environment-friendly production of biodiesel.

Influence of Reaction Temperature on the Pyrolytic Product of Rice Straw by Fast Pyrolysis using a Fluidized Bed (볏짚의 급속 열분해 생성물에 대한 반응온도의 영향)

  • Kang, Bo-Sung;Park, Young-Kwon;Kim, Joo-Sik
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.47-58
    • /
    • 2005
  • Rice straw is one of the main renewable energy sources in Korea, and bio-oil is produced from rice straw with a lab. scale plant equipped mainly with a fluidized bed and a char removal system. We investigated how the reaction temperature affected the production of bio-oil and the efficiency of a char removal system. To elucidate how the temperature depended on the production of bio-oil, experiment were conducted between $450^{\circ}C\;and\;600^{\circ}C$ with a feed rate of about 300g/h. The mass balance was established in each experiment, and the produced gas and oil were analyzed with the aid of GCs and a GC-MS system. The char removal system is composed of a cyclone and a hot filter. In the experiments, we observed that the optimum reaction temperature range for the production of bio-oil is between $450^{\circ}C\;and\;500^{\circ}C$.

  • PDF

Effect of Particle Size and Moisture Content of Woody Biomass on the Feature of Pyrolytic Products (급속열분해 공정에서 바이오매스의 입자크기와 수분 함량이 열분해 산물의 특성에 미치는 영향)

  • Hwang, Hyewon;Oh, Shinyoung;Kim, Jae-Young;Lee, Soomin;Cho, Taesu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.445-453
    • /
    • 2012
  • In this study the effects of particle size and water content on the yields and physical/chemical properties of pyrolytic products were investigated through fast-pyrolysis of yellow poplar. Water content was critical parameters influencing the properties of bio-oil. The yields of bio-oil were increased with decreasing water content. However, the yield of pyrolytic product was not clearly influenced by feedstock's particle size. The water content, pH and HHV (Higher Heating Value) of bio-oil were measured to 20~30%, 2.2~2.4 and 16.6~18.5MJ/kg, respectively. The water content of feedstock was clearly influenced to water content of bio-oil. In terms of bio-char, HHV of them were measured to 26.2~30.1 MJ/kg with high content of carbon over 80%.

A Complete, Reductive Depolymerization of Concentrated Sulfuric Acid Hydrolysis Lignin into a High Calorific Bio-oil using Supercritical Ethanol

  • Riaz, Asim;Kim, Jaehoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.447-452
    • /
    • 2016
  • It is imperative to develop an effective pathway to depolymerize lignin into liquid fuel that can be used as a bioheavy oil. Lignin can be converted into liquid products either by a solvent-free thermal cracking in the absence air, or thermo-chemical degradation in the presence of suitable solvents and chemicals. Here we show that the solvent-assisted liquefaction has produced promising results in the presence of metal-based catalysts. The supercritical ethanol is an efficient liquefaction solvent, which not only provides better solubility to lignin, but also scavenges the intermediate species. The concentrated sulfuric acid hydrolysis lignin (CSAHL) was completely liquefied in the presence of solid catalysts (Ni, Pd and Ru) with no char formation. The effective deoxy-liquefaction nature associated with scEtOH with aid hydrodeoxygenation catalysts, resulted in significant reduction in oxygen-to-carbon (O/C) molar ratio up to 61%. The decrease in oxygen content and increase in carbon and hydrogen contents increased the calorific value bio-oil, with higher heating value (HHV) of $34.6MJ{\cdot}Kg^{-1}$. The overall process is energetically efficient with 129.8% energy recovery (ER) and 70.8% energy efficiency (EE). The GC-TOF/MS analysis of bio-oil shows that the bio-oil mainly consists of monomeric species such as phenols, esters, furans, alcohols, and traces of aliphatic hydrocarbons. The bio-oil produced has better flow properties, low molecular weight, and high aromaticity.