• Title/Summary/Keyword: Bio-analysis

Search Result 3,832, Processing Time 0.032 seconds

Vibration Analysis of 300 mesh Soy Bean Crusher Based on Finite Element Method (유한 요소법에 의한 300 메쉬 콩 가루 분쇄기의 진동 해석)

  • Pratama, Pandu Sandi;Supeno, Destiani;Byun, Jae-Yeong;Woo, Ji-Hee;Lee, En-Suk;Nam, Mi-kyung;Hwang, Hyun-Ji;Sean, Keefe Dimas Harris;Lee, Kang-Sam;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.359-364
    • /
    • 2017
  • A machine such as bean crusher machine is subjected to different loads and vibration. Due to this vibration there will be certain deformations which affect the performance of the machine in adverse manner. This paper proposed a vibration analysis of bean crusher machine using ANSYS. The Finite Element Method (FEM) analysis is carried out to study the effect of vibration on the structure in order to ensure the safety. This work helps the machine developer make a better product at the early design stage with lower cost and faster development time. To do this, firstly, using Inventor, a CAD model is prepared. Secondly, the analysis is to be carried out using ANSYS 15. The modal analysis and random vibration analysis of the structure was conducted. The analysis shows that the proposed design was successfully shows the minimum deformation when the vibration was applied in normal condition.

Workflow-based Bio Data Analysis System for HPC (HPC 환경을 위한 워크플로우 기반의 바이오 데이터 분석 시스템)

  • Ahn, Shinyoung;Kim, ByoungSeob;Choi, Hyun-Hwa;Jeon, Seunghyub;Bae, Seungjo;Choi, Wan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Since human genome project finished, the cost for human genome analysis has decreased very rapidly. This results in the sharp increase of human genome data to be analyzed. As the need for fast analysis of very large bio data such as human genome increases, non IT researchers such as biologists should be able to execute fast and effectively many kinds of bio applications, which have a variety of characteristics, under HPC environment. To accomplish this purpose, a biologist need to define a sequence of bio applications as workflow easily because generally bio applications should be combined and executed in some order. This bio workflow should be executed in the form of distributed and parallel computing by allocating computing resources efficiently under HPC cluster system. Through this kind of job, we can expect better performance and fast response time of very large bio data analysis. This paper proposes a workflow-based data analysis system specialized for bio applications. Using this system, non-IT scientists and researchers can analyze very large bio data easily under HPC environment.

The Comparative Analysis for the Economic Value of the Southern Part Cropping System Introducing New Bio-energy Crops. (영.호남 작부체계의 바이오에너지용 신품종 도입시 경제적 가치 비교분석)

  • Kim, Chung-Sil;Lee, Hyun-Keun
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • The production of bio-energy crops is a major research project in the emphasizing the "low carbon green growth" strategy. For this, the possibility of the introduction of the new energy crops improve the agricultural income from fanning must be diagnosed. This study describes the level of agricultural income per unit area by cropping system based on the income of crops in the field. Especially, we have chosen the southern part attracting the attention in the possible area of the bio-energy crop production. This study consists of five chapters. Chapter I is the introduction. Chapter II is on the status of the southern part cropping system and the analysis of the economic value. Chapter III is on the economic value analysis introducing new bio-energy crops. Chapter IV is on the comparative analysis for the economic value of the croping system introducing new bio-energy crops. Chapter V is the conclusion.

  • PDF

Bio-oil production using residual sewage sludge after lipid and carbohydrate extraction

  • Supaporn, Pansuwan;Ly, Hoang Vu;Kim, Seung-Soo;Yeom, Sung Ho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.202-210
    • /
    • 2019
  • In order to maximize the utilization of sewage sludge, a waste from wastewater treatment facility, the residual sewage sludge generated after lipid and carbohydrate extraction for biodiesel and bioethanol production was used to produce bio-oil by pyrolysis. Thermogravimetric analysis showed that sludge pyrolysis mainly occurred between 200 and $550^{\circ}C$ (with peaks formed around 337.0 and $379.3^{\circ}C$) with the decomposition of the main components (carbohydrate, lipid, and protein). Bio-oil was produced using a micro-tubing reactor, and its yield (wt%, g-bio-oil/g-residual sewage sludge) increased with an increase in the reaction temperature and time. The maximum bio-oil yield of 33.3% was obtained after pyrolysis at $390^{\circ}C$ for 5 min, where the largest amount of energy was introduced into the reactor to break the bonds of organic compounds in the sludge. The main components of bio-oil were found to be trans-2-pentenoic acid and 2-methyl-2-pentenoic acid with the highest selectivity of 28.4% and 12.3%, respectively. The kinetic rate constants indicated that the predominant reaction pathway was sewage sludge to bio-oil ($0.1054min^{-1}$), and subsequently to gas ($0.0541min^{-1}$), rather than the direct conversion of sewage sludge to gas ($0.0318min^{-1}$).

Genomic Susceptibility Analysis for Atopy Disease Using Cord Blood DNA in a Small Cohort

  • Koh, Eun Jung;Kim, Seung Jun;Ahn, Jeong Jin;Yang, Jungeun;Oh, Moon Ju;Hwang, Seung Yong
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.304-308
    • /
    • 2018
  • Atopic disease is caused by a complex combination of environmental factors and genetic factors, and studies on influence of exposure to various environmental factors on atopic diseases are continuously reported. However, the exact cause of atopic dermatitis is not yet known. Our study was conducted to analyse the association of SNPs with the development of atopic disease in a small cohort. Samples were collected from the Mothers' and Children's Environmental Health (MOCEH) study and 192 cord blood DNA samples were used to identify incidence of atopy due to influence of exposure to environmental factors. Genetic elements were analysed using a precision medicine research (PMR) array designed with various SNPs for personalized medicine. Case-control analysis of atopy disease revealed 253 significant variants (p<0.0001) and SNPs on five genes (CARD11, ZNF365, KIF3A, DMRTA1, and SFMBT1) were variants identified in previous atopic studies. These results are important to confirm the genetic mutation that may lead to the onset of foetal atopy due to maternal exposure to harmful environmental factors. Our results also suggest that a small-scale genome-wide association analysis is beneficial to confirm specific variants as direct factors in the development of atopy.

Estimation of Stress Status Using Bio-signals and Fuzzy Theory (생체신호와 퍼지이론을 이용한 스트레스 평가에 관한 연구)

  • Sin, Jae-U;Yun, Yeong-Ro;Park, Se-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.121-131
    • /
    • 1999
  • There have been many questionnaires, catecholeamins analysis and bio-signal analysis to analyze human stress condition through out the years, and especially researches in bio-signal analysis have been actively increasing. The purpose of our research is Quantitative analysis of stress with synthesis of bio-signals. The stress status was estimated using the bio-signals and fuzzy theory which combines these signals and physiological knowledge. Stress was estimated by a 'coin-stacking' experiment with two type-relax and stress status. To do the experiment EMG, respiration, periphery temperature, heart rate and skin conductances were used to evaluate human stress stages. The system was tested to 10 healthy persons and achieved a template of a stress progress and stress variations were classified to 4 steps by continuous or rising status of stress progress.

  • PDF

Modal and Stress Analysis of Spur Gear in DC Motor Gearhead using Finite Element Model

  • Pratama, Pandu Sandi;Supeno, Destiani;Jeong, Seongwon;Park, Cunsook;Woo, Jihee;Lee, Eunsook;Yoon, Woojin;Choi, Wonsik
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.17-17
    • /
    • 2017
  • In electric agricultural machine the gearhead is needed to convert the high speed low torque rotation motion generated by DC motor to lower speed high torque motion used by the vehicle. The gearhead consist of several spur gears works as reduction gears. Spur gear have straight tooth and are parallel to the axis of the wheel. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modeling and simulation of spur gears in DC motor gearhead is important to predict the actual motion behavior. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress including bending fatigue. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of gearhead is simulated using ansys work bench software based on finite element method (FEM). The modal analysis was done to understand gearhead deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on gearhead to simulate the gear teeth bending stress and contact stress behavior. This methodology serves as an approach for gearhead design evaluation, and the study of gear stress behavior in DC motor gearhead which is needed in the small workshop scale industries.

  • PDF