• 제목/요약/키워드: Bio-Pharmaceutical

검색결과 388건 처리시간 0.018초

Anxiolytic-like effects of Portulaca oleraceae L. using the elevated plus-maze in mice

  • Lee, Chang-Hwan;Yoon, Byung-Hoon;Ryu, Jong-Hoon;Jung, Ji-Wook
    • Advances in Traditional Medicine
    • /
    • 제9권2호
    • /
    • pp.135-141
    • /
    • 2009
  • The purpose of this study was to characterize the putative anxiolytic-like effects of the 70% ethanol extract of Portulaca oleracea (EPO) using an elevated plus maze (EPM) in mice. The EPO was orally administered at 50, 100, 200 or 400 mg/kg to ICR mice, 1 h before the behavioral evaluation in the EPM, respectively. Control mice were treated with an equal volume of 10% tween 80, and positive control mice with diazepam (1 mg/kg). Single treatments of the EPO significantly increased the percentage of time spent and arm entries into the open arms of the EPM versus controls (P < 0.05). Moreover, there were no changes in the locomotor activity and myorelaxant effects in any group compared with the saline controls. In addition, the anxiolytic-like effects of the EPO were blocked by flumazenil (10 mg/kg, i.p), a $GABA_A$ antagonist not by WAY 100635 (0.3 mg/kg, i.p), a 5-$HT_{1A}$ receptor antagonist. These results indicate that P. oleracea is an effective anxiolytic agent, and suggest that the anxiolytic-like effects of P. oleracea is mediated via the GABAergic nervous system.

유익하게 인체에 작용하는 균(유인균)을 이용한 인삼발효식초 제조과정에 대한 특성연구 (A Study on the Vinegar Fermentation Processes of Fresh Korean Ginseng Extract Using Mix Microbial Yinkin)

  • 황세란;데스티아니 수페노;권순홍;정성원;권순구;박종민;김종순;최원식
    • 한국산업융합학회 논문집
    • /
    • 제20권4호
    • /
    • pp.345-350
    • /
    • 2017
  • Saponin is the most pharmaceutical active ingredients of the ginseng plant, it was called "Ginsenoside" which means the Glycoside of ginseng that composed glycosides and aglycones. The human body will absorb the saponin easily if these substrate was decomposed by active microorganism. Fermentation is the most convenient technique to decompose this active ingredients. The purpose of this research was to study the sugar content, pH and acidity development during the ginseng fermentation process. Fresh Korean ginseng and red ginseng extract was used as the main ingredient. The concentrated of pure ginseng extract was added to increase the saponin extract. Furthermore, the mix microbial powder was added as starter to increase the fermentation efficiency. The ginseng was fermented in fermentation chamber at temperature $37^{\circ}C$ during 70 days. In the end of experiment the sugar content was decreased from 24% to 7.65%, The pH was decreased from 6.5 to 3.4, and the acidity level was incresed from 0% to 1.2%.

Secondary structure analysis of MRA1997 from Mycobacterium tuberculosis and characterization of DNA binding property

  • Kim, Hyo Jung;Lee, Ki-Young;Kim, Yena;Kwon, Ae-Ran;Lee, Bong-Jin
    • 한국자기공명학회논문지
    • /
    • 제20권2호
    • /
    • pp.36-40
    • /
    • 2016
  • MRA1997 is a highly conserved protein from mycobacterial strains. However, no structural and functional information is associated with it. Thus, to obtain details about structure and function of this protein, we have utilized NMR spectroscopy. The recombinant MRA1997 was highly purified and its DNA binding mode was characterized. The tertiary structure of MRA1997 was modeled on the basis of our NMR chemical shift data combined with the webserver CS23D. The binding of MRA1997 with DNA was first monitored by electrophoresis mobility shift assays. The residues involved in DNA binding are identified using NMR chemical shift perturbation experiments. Based on our study, we suggest that MRA1997 interacts with DNA and may play an important role in Mycobacterium tuberculosis physiology.

Backbone 1H, 15N and 13C Resonance Assignment and Secondary Structure Prediction of HP0062 (O24902_HELPY) from Helicobacter pylori

  • Jang, Sun-Bok;Ma, Chao;Park, Sung-Jean;Kwon, Ae-Ran;Lee, Bong-Jin
    • 한국자기공명학회논문지
    • /
    • 제13권2호
    • /
    • pp.117-125
    • /
    • 2009
  • HP0062 is an 86 residue hypothetical protein from Helicobacter pylori strain 26695. HP0062 was identified ESAT-6/WXG100 superfamily protein based on structure and sequence alignment and also contains leucine zipper domain sequence. Here, we report the sequence-specific backbone resonance assignment of HP0062. About 97.7% of all $^1H_N,\;^{15}N,\;^{13}C_{\alpha},\;^{13}C_{\beta}\;and\;^{13}C=O$ resonances were assigned unambiguously. We could predict the secondary structure of HP0062 by analyzing the deviation of the $^{13}C_{alpha}\;and\;^{13}C_{\beta}$ chemical shifts from their respective random coil values. Secondary structure prediction shows that HP0062 consist of two ${\alpha}$-helices. This study is a prerequisite for determining the solution structure of HP0062 and can be used for the study on interaction between HP0062 and DNA and other Helicobacter pylori proteins.

뮤코펙트 정(염산암브록솔 30 mg)에 대한 암브렉트 정의 생물학적 동등성 (Bioequivalence of AmbrectTM Tablet to MucopectTM Tablet (Ambroxol hydrochloride 30 mg))

  • 유정연;정선경;최미희;한상범;이경률;이희주
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권3호
    • /
    • pp.215-221
    • /
    • 2003
  • A bioequivalence study of $Ambrect^{TM}$ tablets (Dong Wha Pharm. Ind. Co., Ltd.) to $Mucopect^{TM}$ tablets (Boehringer Ingelheim Korea, Ltd.) was conducted according to the guideline of Korea Food and Drug Administration (KFDA). Twenty four healthy male Korea volunteers received each medicine at the ambroxol hydrochloride dose of 30 mg in a $2{\times}2$ crossover study. There was a one-week wash out period between the doses. Plasma concentrations of ambroxol were monitored by a high-performance liquid chromatography for over a period of 24 hours after the administration. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 24 hr) was calulated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}\;(time\;to\;reach\;C_{max})$ were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t\;and\;C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for $Ambrect^{TM}/Mucopect^{TM}$ were 0.89-1.01 and 0.89-1.02, respectively. These values were within the acceptable bioequivalence intervals of 0.80-1.25. Thus, our study demonstrated the bioequivalence of $Ambrect^{TM}\;and\;Mucopect^{TM}$ with respect to the rate and extent of absorption.

케타스캅셀(이부딜라스트 10 mg)에 대한 딜라스트캡슐의 생물학적동등성 (Bioequivalence of DilastTM Capsule to Ketas® Capsule (Ibudilast 10 mg))

  • 장규영;강승우;유은주;유수현;이경률;이희주
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권3호
    • /
    • pp.197-203
    • /
    • 2007
  • A bioequivalence study of $Dilast^{TM}$ Capsule (Chong Kun Dang Pharma. Co., Ltd.) to $Ketas^{(R)}$ Capsule (Han Dok Pharma. Co., Ltd.) was conducted according to the guidelines of Korea Food and Drug Administration (KFDA). Twenty eight healthy male Korean volunteers received each medicine at the ibudilast dose of 20 mg in a $2{\times}2$ crossover study. There was one week wash-out period between the doses. Plasma concentrations of ibudilast were monitored by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) for over a period of 36 hours after drug administration. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 36 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t\;and\;C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for $Dilast^{TM}$ $Capsule/Ketas^{(R)}$ Capsule were $log0.93{\sim}log1.06$ and $log0.93{\sim}log1.11$, respectively. These values were within the acceptable bioequivalence intervals of $log0.80{\sim}log1.25$. Thus, our study demonstrated the bioequivalence of $Dilast^{TM}$ Capsule and $Ketas^{(R)}$ Capsule with respect to the rate and extent of absorption.

큐란 정(염산라니티딘 150 mg)에 대한 수도염산라니티딘정의 생물학적동등성 (Bioequivalence Of SudoTM Ranitidine Hydrochloride Tablet to CuranTM Tablet (Ranitidine Hydrochloride 150 mg))

  • 이선녀;고연정;강승우;윤서현;박무신;이예리;이경률;이희주
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권3호
    • /
    • pp.193-199
    • /
    • 2006
  • A bioequivalence study of $Sudo^{TM}$ Ranitidine HCI tablet (Sudo Pharma. Ind. Co., Ltd.) to $Curan^{TM}$ tablet (Il Dong Pharma. Ind. Co., Ltd.) was conducted according to the guidelines of Korea Food and Drug Administration (KFDA). Twenty four healthy male Korean volunteers received each medicine at the ranitidine hydrochloride dose of 150 mg in a 2x2 crossover study. There was a one week wash-out period between the doses. Plasma concentrations of ranitidine were monitored by a high-turbulent liquid chromatography (HTLC) for over a period of 12 hours after drug administration. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 12 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found far all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for $Sudo^{TM}$ Ranitidine $HCl/Curan^{TM}$ were 0.92-1.00 and 0.90-1.03, respectively. These values were within the acceptable bioequivalence intervals of 0.80-1.25. Thus, our study demonstrated the bioequivalence of $Sudo^{TM}$ Ranitidine HCI and $Curan^{TM}$ with respect to the rate and extent of absorption.

박사르®정 4 밀리그램(라시디핀 4 mg)에 대한 라니디엠®정 4 밀리그램의 생물학적동등성 (Bioequivalence of LANIDIEM® Tablet 4 mg to Vaxar® Tablet 4 mg(Lacidipine 4 mg))

  • 이윤영;김혜진;나숙희;조경희;장문선;박영준;이희주
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권2호
    • /
    • pp.125-131
    • /
    • 2010
  • A bioequivalence study of LANIDIEM$^{(R)}$ tablet 4 mg (Samil. Co., Ltd.) to Vaxar$^{(R)}$ tablet 4 mg (GlaxoSmithKline Co., Ltd.) was conducted according to the guidelines of Korea Food and Drug Administration (KFDA). Forty healthy male Korean volunteers were enrolled in the study and thirty six volunteers completed the study according to the protocol. Thirty six volunteers received each medicine at the lacidipine dose of 4 mg in a $2{\times}2$ crossover study. There was one week wash-out period between the doses. Plasma concentrations of lacidipine were monitored by a high performance liquid chromatography - tandem mass spectrometry (LC-MS/MS) for over a period of 24 hours after drug administration. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 24 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for LANIDIEM$^{(R)}$/Vaxar$^{(R)}$ were log 0.8102~log 1.0417 and log 0.8493~log 1.1439, respectively. These values were within the acceptable bioequivalence intervals of log 0.80~log 1.25. Thus, our study demonstrated the bioequivalence of LANIDIEM$^{(R)}$ tablet 4 mg and Vaxar$^{(R)}$ tablet 4 mg with respect to the rate and extent of absorption.

In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals

  • Jiratchayamaethasakul, Chanipa;Ding, Yuling;Hwang, Ouibo;Im, Seung-Tae;Jang, Yebin;Myung, Seung-Won;Lee, Jeong Min;Kim, Hyun-Soo;Ko, Seok-Chun;Lee, Seung-Hong
    • Fisheries and Aquatic Sciences
    • /
    • 제23권3호
    • /
    • pp.6.1-6.9
    • /
    • 2020
  • Background: Halophyte plant (HPs), a salt-resistant flora, has been reported to provide several health benefits, but the knowledge of its cosmeceutical potential is still ambiguous. Here, 70% ethanol extracts of 22 HPs collected from along the coast of South Korea were investigated for their potentials of antioxidant, anti-aging, and whitening properties for use as materials in novel cosmeceuticals. Methods: Antioxidant activities were determined by DPPH (1,1-diphenyl-2-pricrylhydrazyl) free radical and hydrogen peroxide scavenging assays, and skin aging-related enzyme activities (anti-elastase, anti-collagenase, anti-hyaluronidase, and anti-tyrosinase) were evaluated by using the spectrophotometric method. Results: Among the 22 HPs, we found that Ischaemum antephoroides f. coreana and Atriplex gmelinii extracts presented the strongest scavenging effects against DPPH free radical and hydrogen peroxide, respectively. Our finding additionally suggested that Salicornia europaea extract might provide a major source of anti-elastase and anti-hyaluronidase; meanwhile, Rosa rugosa extract showed the highest anti-collagenase effect. Furthermore, the highest tyrosinase inhibitory activity was possessed by Spartina anglica extract. Conclusion: These findings may suggest that halophyte plants showing biological activities may be potent inhibitors of tyrosinase, elastase, collagenase, and hyaluronidase and could be useful for application in cosmeceuticals.

Molecular Cloning and Analysis of the Gene for P-450 Hydroxylase from Pseudonocardia autotrophica IFO 12743

  • Kim, Jung-Mee;Younmie Jin;Hyun, Chang-Gu;Kim, Jong-Hee;Lee, Hong-Sub;Kang, Dae-Kyung;Kang, Dae-Jung;Kim, Tae-Yong;Suh, Joo-Won
    • Journal of Microbiology
    • /
    • 제40권3호
    • /
    • pp.211-218
    • /
    • 2002
  • A 4.8-kb DNA fragment encoding the P-450 type hydroxylase and ferredoxin genes was cloned from Pseudonocardia autotrophica IFO 12743 that can convert vitamin D$\_$3/ into its hydroxylated active forms. In order to isolate the P-450 gene cluster in this organism, we designed PCR primers on the basis of the regions of an oxygen binding site and a heme ligand pocket that are general characteristics of the P-450 hydroxylase. Sequencing analysis of the BamHI fragment revealed the presence of four complete and one incomplete ORFs, named PauA, PauB, PauC, and PauD, respectively. As a result of computer-based analyses, PauA and PauB have homology with enoyl-CoA hydratase from several organisms and the positive regulators belonging to the tetR family, respectively. PauC and PauD show similarity with SuaB/C proteins and ferredoxins, respectively, which are composed of P-450 monooxygenase systems for metabolizing two sulfonylurea herbicides in Streptomyces griseolus PauC shows the highest similarity with another CytP-450$\_$Sca2/ protein that is responsible for production of a specific HMG-CoA reductase inhibitor, pravastatin, in S. carbophilus. Cultures of Steptomyces lividans transformant, containing the P-450 gene cluster on the pWHM3 plasmid, was unable to convert vitamin D$\_$3/ to its hydroxylated forms.