• 제목/요약/키워드: Bio-Data

검색결과 2,092건 처리시간 0.033초

Evaluation of Erosivity Index (EI) in Calculation of R Factor for the RUSLE

  • Kim, Hye-Jin;Song, Jin-A;Lim, You-Jin;Chung, Doug-Young
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.112-117
    • /
    • 2012
  • The Revised Universal Soil Loss Equation (RUSLE) is a revision of the Universal Soil Loss Equation (USLE). However, changes for each factor of the USLE have been made in RUSLE which can be used to compute soil loss on areas only where significant overland flow occurs. RUSLE which requires standardized methods to satisfy new data requirements estimates soil movement at a particular site by utilizing the same factorial approach employed by the USLE. The rainfall erosivity in the RUSLE expressed through the R-factor to quantify the effect of raindrop impact and to reflect the amount and rate of runoff likely is associated with the rain. Calculating the R-factor value in the RUSLE equation to predict the related soil loss may be possible to analyse the variability of rainfall erosivity with long time-series of concerned rainfall data. However, daily time step models cannot return proper estimates when run on other specific rainfall patters such as storm and daily cumulative precipitation. Therefore, it is desirable that cross-checking is carried out amongst different time-aggregations typical rainfall event may cause error in estimating the potential soil loss in definite conditions.

Implementation of a bio-inspired two-mode structural health monitoring system

  • Lin, Tzu-Kang;Yu, Li-Chen;Ku, Chang-Hung;Chang, Kuo-Chun;Kiremidjian, Anne
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.119-137
    • /
    • 2011
  • A bio-inspired two-mode structural health monitoring (SHM) system based on the Na$\ddot{i}$ve Bayes (NB) classification method is discussed in this paper. To implement the molecular biology based Deoxyribonucleic acid (DNA) array concept in structural health monitoring, which has been demonstrated to be superior in disease detection, two types of array expression data have been proposed for the development of the SHM algorithm. For the micro-vibration mode, a two-tier auto-regression with exogenous (AR-ARX) process is used to extract the expression array from the recorded structural time history while an ARX process is applied for the analysis of the earthquake mode. The health condition of the structure is then determined using the NB classification method. In addition, the union concept in probability is used to improve the accuracy of the system. To verify the performance and reliability of the SHM algorithm, a downscaled eight-storey steel building located at the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark structure. The structural response from different damage levels and locations was collected and incorporated in the database to aid the structural health monitoring process. Preliminary verification has demonstrated that the structure health condition can be precisely detected by the proposed algorithm. To implement the developed SHM system in a practical application, a SHM prototype consisting of the input sensing module, the transmission module, and the SHM platform was developed. The vibration data were first measured by the deployed sensor, and subsequently the SHM mode corresponding to the desired excitation is chosen automatically to quickly evaluate the health condition of the structure. Test results from the ambient vibration and shaking table test showed that the condition and location of the benchmark structure damage can be successfully detected by the proposed SHM prototype system, and the information is instantaneously transmitted to a remote server to facilitate real-time monitoring. Implementing the bio-inspired two-mode SHM practically has been successfully demonstrated.

Chemical Imaging Analysis of the Micropatterns of Proteins and Cells Using Cluster Ion Beam-based Time-of-Flight Secondary Ion Mass Spectrometry and Principal Component Analysis

  • Shon, Hyun Kyong;Son, Jin Gyeong;Lee, Kyung-Bok;Kim, Jinmo;Kim, Myung Soo;Choi, Insung S.;Lee, Tae Geol
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.815-819
    • /
    • 2013
  • Micropatterns of streptavidin and human epidermal carcinoma A431 cells were successfully imaged, as received and without any labeling, using cluster $Au_3{^+}$ ion beam-based time-of-flight secondary ion mass spectrometry (TOF-SIMS) together with a principal component analysis (PCA). Three different analysis ion beams ($Ga^+$, $Au^+$ and $Au_3{^+}$) were compared to obtain label-free TOF-SIMS chemical images of micropatterns of streptavidin, which were subsequently used for generating cell patterns. The image of the total positive ions obtained by the $Au_3{^+}$ primary ion beam corresponded to the actual image of micropatterns of streptavidin, whereas the total positive-ion images by $Ga^+$ or $Au^+$ primary ion beams did not. A PCA of the TOF-SIMS spectra was initially performed to identify characteristic secondary ions of streptavidin. Chemical images of each characteristic ion were reconstructed from the raw data and used in the second PCA run, which resulted in a contrasted - and corrected - image of the micropatterns of streptavidin by the $Ga^+$ and $Au^+$ ion beams. The findings herein suggest that using cluster-ion analysis beams and multivariate data analysis for TOF-SIMS chemical imaging would be an effectual method for producing label-free chemical images of micropatterns of biomolecules, including proteins and cells.

인공신경망에 의한 생물공정에서 2차원 형광스펙트럼의 분석 I - 자기조직화망에 의한 형광스펙트럼의 분류 - (Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks I - Classification of Fluorescence Spectra using Self-Organizing Maps -)

  • 이금일;임용식;김춘광;이승현;정상욱;이종일
    • KSBB Journal
    • /
    • 제20권4호
    • /
    • pp.291-298
    • /
    • 2005
  • 본 연구는 재조합 대장균과 S.cerevisiae의 발효공정에서 형광스펙트럼 데이터를 수집하였으며, SOM을 이용하여 형광스펙트럼 데이터를 특정 그룹으로 분류하고 발효공정을 분석하고자 하였다. 배출가스 내 이산화탄소농도와 세포농도 같은 공정변수들은 SOM 알고리즘으로부터 얻은 분산 및 정규화된 가중치들과 좋은 연관성을 나타내었다. 전체 스펙트럼 데이터의 분류는 생물공정 모델링을 위한 매우 중요한 단계인데 그 이유는 몇몇 여기파장과 방출파장의 유의한 조합들이 전체영역의 스펙트럼 데이터로부터 추출되기 때문이다. 예를 들면, 본 연구에서 SOM을 이용하여 추출한 98개의 스펙트럼 데이터의 예제들은 부분최소자승법이나 감독신경망 (supervised neural network)을 이용한 공정의 모델링에 사용될 수 있다.

무선 센서망에서 생체시스템 기반의 전송노드 선택 및 다중 채널 전송 알고리즘 (Bio-inspired Node Selection and Multi-channel Transmission Algorithm in Wireless Sensor Networks)

  • 손재현;양윤기;변희정
    • 인터넷정보학회논문지
    • /
    • 제15권5호
    • /
    • pp.1-7
    • /
    • 2014
  • 무선센서 네트워크(WSNs)는 일반적으로 수많은 센서노드들이 배치되어 데이터를 전송하며, 불필요한 데이터 전송으로 인해 에너지 낭비를 초래한다. 기존의 연구들은 주로 에너지 소모문제를 해결하는데 집중되었다. 하지만 실시간으로 정보전송이 필요한 어플리케이션에 대해서는 지연 보장 역시 고려되어야 한다. 본 논문은 생체시스템을 모방하여 무선센서망에서 에너지의 소모와 연시간을 줄이기 위한 BISA(Bio-inspired Scheduling Algorithm)를 제안한다. BISA는 에너지 효율성이 높은 라우팅경로를 탐색하고 다중채널을 이용해 데이터 전송경로를 다중화함으로써 데이터 전송을 위한 에너지소모와 지연시간을 최소화한다. 실험결과를 통해 제안한 알고리즘의 기존방식 보다 적은 에너지를 사용하며 동시에 요구지연 시간을 보장함을 확인한다.

생체신호를 활용한 학습기반 영유아 스트레스 상태 식별 모델 연구 (A Machine Learning Approach for Stress Status Identification of Early Childhood by Using Bio-Signals)

  • 전유미;한태성;김관호
    • 한국전자거래학회지
    • /
    • 제22권2호
    • /
    • pp.1-18
    • /
    • 2017
  • 오늘날 감정 표현이 서툰 영유아가 처한 극도의 스트레스 상태를 자동적으로 파악하는 것은 영유아의 안전을 위협하며 지속적으로 발생하는 위험 상황의 실시간적인 인지를 위해 반드시 필요한 기술이다. 따라서 본 논문에서는 생체신호를 활용하여 영유아의 스트레스 상태를 분류하기 위한 기계학습 기반의 모델과 생체신호 수집용 스마트 밴드 및 모니터링용 모바일 어플리케이션을 제안한다. 구체적으로 본 연구에서는 영유아의 감정을 나타내는 주요한 요인이 되는 음성 및 심박 데이터의 조합을 활용하여 기존에 널리 알려진 데이터 마이닝 기법을 통해 영유아의 스트레스 상태 패턴을 학습하고 예측한다. 본 연구를 통해 생체신호를 활용하여 영유아의 스트레스 상태 식별을 자동화할 수 있는 가능성을 확인하였으며 나아가서 궁극적으로 영유아의 위험 상황 예방에 활용될 수 있을 것으로 기대된다.

A retroviral insertion in the tyrosinase (TYR) gene is associated with the recessive white plumage color in the Yeonsan Ogye chicken

  • Cho, Eunjin;Kim, Minjun;Manjula, Prabuddha;Cho, Sung Hyun;Seo, Dongwon;Lee, Seung-Sook;Lee, Jun Heon
    • Journal of Animal Science and Technology
    • /
    • 제63권4호
    • /
    • pp.751-758
    • /
    • 2021
  • The recessive white (locus c) phenotype observed in chickens is associated with three alleles (recessive white c, albino ca, and red-eyed white cre) and causative mutations in the tyrosinase (TYR) gene. The recessive white mutation (c) inhibits the transcription of TYR exon 5 due to a retroviral sequence insertion in intron 4. In this study, we genotyped and sequenced the insertion in TYR intron 4 to identify the mutation causing the unusual white plumage of Yeonsan Ogye chickens, which normally have black plumage. The white chickens had a homozygous recessive white genotype that matched the sequence of the recessive white type, and the inserted sequence exhibited 98% identity with the avian leukosis virus ev-1 sequence. In comparison, brindle and normal chickens had the homozygous color genotype, and their sequences were the same as the wild-type sequence, indicating that this phenotype is derived from other mutation(s). In conclusion, white chickens have a recessive white mutation allele. Since the size of the sample used in this study was limited, further research through securing additional samples to perform validation studies is necessary. Therefore, after validation studies, a selection system for conserving the phenotypic characteristics and genetic diversity of the population could be established if additional studies to elucidate specific phenotype-related genes in Yeonsan Ogye are performed.

A Needs Analysis of Educational Content for Overseas Job Applicants in the Digital Bio-health Industry

  • Soobok Lee;Wootaek Lim
    • 한국전문물리치료학회지
    • /
    • 제30권3호
    • /
    • pp.230-236
    • /
    • 2023
  • Background: The globalization of the healthcare industry and the increasing demand for skilled professionals in the global healthcare industry have opened up opportunities for specialized biotech healthcare professionals to seek overseas employment and career advancement. Objects: This study aimed to develop educational content essential for the overseas employment of digital bio-health professionals. Methods: A survey was conducted among 196 participants. Google Forms (Google) were utilized to create and administer the survey, employing purposive sampling, a non-probability sampling method. Data analysis was performed using IBM SPSS 25.0 (IBM Co.), including Cronbach's α and independent sample t-tests to assess significant differences. Results: About half of college students are interested in overseas employment and international careers, while the other half had not. The most common reason for wanting to work or go overseas was "foreign experience will be useful for future activities in Korea." Students who had experience taking courses from the Bio-health Convergence Open Sharing University preferred overseas programs more than those who did not have that experience. In terms of the degree of desire for overseas education courses provided by universities, contents related to human health were the highest, followed by bio-health big data. Conclusion: Many students wanted to work and go overseas if there is sufficient support from the university. The findings in this study suggest that universities are necessary to play an important role in supporting students' aspirations to work or go overseas by providing language education, education and training programs, information on overseas jobs, and mentoring programs.

Introduction of the Korea BioData Station (K-BDS) for sharing biological data

  • Byungwook Lee;Seungwoo Hwang;Pan-Gyu Kim;Gunwhan Ko;Kiwon Jang;Sangok Kim;Jong-Hwan Kim;Jongbum Jeon;Hyerin Kim;Jaeeun Jung;Byoung-Ha Yoon;Iksu Byeon;Insu Jang;Wangho Song;Jinhyuk Choi;Seon-Young Kim
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.12.1-12.8
    • /
    • 2023
  • A wave of new technologies has created opportunities for the cost-effective generation of high-throughput profiles of biological systems, foreshadowing a "data-driven science" era. The large variety of data available from biological research is also a rich resource that can be used for innovative endeavors. However, we are facing considerable challenges in big data deposition, integration, and translation due to the complexity of biological data and its production at unprecedented exponential rates. To address these problems, in 2020, the Korean government officially announced a national strategy to collect and manage the biological data produced through national R&D fund allocations and provide the collected data to researchers. To this end, the Korea Bioinformation Center (KOBIC) developed a new biological data repository, the Korea BioData Station (K-BDS), for sharing data from individual researchers and research programs to create a data-driven biological study environment. The K-BDS is dedicated to providing free open access to a suite of featured data resources in support of worldwide activities in both academia and industry.

Design and Implementation of Ubiquitous Sensor Network System for Monitoring the Bio-information and Emergency of the Elderly in Silver Town

  • Choi, Seong-Ho;Park, Hyung-Kun;Yu, Yun-Seop
    • Journal of information and communication convergence engineering
    • /
    • 제8권2호
    • /
    • pp.219-222
    • /
    • 2010
  • An ubiquitous sensor network (USN) system to monitor the bio information and the emergency of the elderly in the silver town is presented. The USN system consists of the sensor node platforms based on MCU of Atmage128L and RF Chip of CC2420 satisfying IEEE 802.15.4, which includes the bios sensor module such as the electrocardiogram (ECG) sensor and the temperature sensor. Additionally, when an emergency of the elderly is occurred in the silver town, the routing algorithm suitable to find and inform the location of the elderly is proposed, and the proposed routing algorithm is applied to the USN. To collect and manage the ECG data at the PC connected to the sink node, LabView software is used. The bio information and the emergency of the elderly can also be monitored at the client PC by TCP/IP networks in the USN system.