• Title/Summary/Keyword: Bio-Data

Search Result 2,098, Processing Time 0.066 seconds

Evaluation of Erosivity Index (EI) in Calculation of R Factor for the RUSLE

  • Kim, Hye-Jin;Song, Jin-A;Lim, You-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.112-117
    • /
    • 2012
  • The Revised Universal Soil Loss Equation (RUSLE) is a revision of the Universal Soil Loss Equation (USLE). However, changes for each factor of the USLE have been made in RUSLE which can be used to compute soil loss on areas only where significant overland flow occurs. RUSLE which requires standardized methods to satisfy new data requirements estimates soil movement at a particular site by utilizing the same factorial approach employed by the USLE. The rainfall erosivity in the RUSLE expressed through the R-factor to quantify the effect of raindrop impact and to reflect the amount and rate of runoff likely is associated with the rain. Calculating the R-factor value in the RUSLE equation to predict the related soil loss may be possible to analyse the variability of rainfall erosivity with long time-series of concerned rainfall data. However, daily time step models cannot return proper estimates when run on other specific rainfall patters such as storm and daily cumulative precipitation. Therefore, it is desirable that cross-checking is carried out amongst different time-aggregations typical rainfall event may cause error in estimating the potential soil loss in definite conditions.

Implementation of a bio-inspired two-mode structural health monitoring system

  • Lin, Tzu-Kang;Yu, Li-Chen;Ku, Chang-Hung;Chang, Kuo-Chun;Kiremidjian, Anne
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.119-137
    • /
    • 2011
  • A bio-inspired two-mode structural health monitoring (SHM) system based on the Na$\ddot{i}$ve Bayes (NB) classification method is discussed in this paper. To implement the molecular biology based Deoxyribonucleic acid (DNA) array concept in structural health monitoring, which has been demonstrated to be superior in disease detection, two types of array expression data have been proposed for the development of the SHM algorithm. For the micro-vibration mode, a two-tier auto-regression with exogenous (AR-ARX) process is used to extract the expression array from the recorded structural time history while an ARX process is applied for the analysis of the earthquake mode. The health condition of the structure is then determined using the NB classification method. In addition, the union concept in probability is used to improve the accuracy of the system. To verify the performance and reliability of the SHM algorithm, a downscaled eight-storey steel building located at the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark structure. The structural response from different damage levels and locations was collected and incorporated in the database to aid the structural health monitoring process. Preliminary verification has demonstrated that the structure health condition can be precisely detected by the proposed algorithm. To implement the developed SHM system in a practical application, a SHM prototype consisting of the input sensing module, the transmission module, and the SHM platform was developed. The vibration data were first measured by the deployed sensor, and subsequently the SHM mode corresponding to the desired excitation is chosen automatically to quickly evaluate the health condition of the structure. Test results from the ambient vibration and shaking table test showed that the condition and location of the benchmark structure damage can be successfully detected by the proposed SHM prototype system, and the information is instantaneously transmitted to a remote server to facilitate real-time monitoring. Implementing the bio-inspired two-mode SHM practically has been successfully demonstrated.

Chemical Imaging Analysis of the Micropatterns of Proteins and Cells Using Cluster Ion Beam-based Time-of-Flight Secondary Ion Mass Spectrometry and Principal Component Analysis

  • Shon, Hyun Kyong;Son, Jin Gyeong;Lee, Kyung-Bok;Kim, Jinmo;Kim, Myung Soo;Choi, Insung S.;Lee, Tae Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.815-819
    • /
    • 2013
  • Micropatterns of streptavidin and human epidermal carcinoma A431 cells were successfully imaged, as received and without any labeling, using cluster $Au_3{^+}$ ion beam-based time-of-flight secondary ion mass spectrometry (TOF-SIMS) together with a principal component analysis (PCA). Three different analysis ion beams ($Ga^+$, $Au^+$ and $Au_3{^+}$) were compared to obtain label-free TOF-SIMS chemical images of micropatterns of streptavidin, which were subsequently used for generating cell patterns. The image of the total positive ions obtained by the $Au_3{^+}$ primary ion beam corresponded to the actual image of micropatterns of streptavidin, whereas the total positive-ion images by $Ga^+$ or $Au^+$ primary ion beams did not. A PCA of the TOF-SIMS spectra was initially performed to identify characteristic secondary ions of streptavidin. Chemical images of each characteristic ion were reconstructed from the raw data and used in the second PCA run, which resulted in a contrasted - and corrected - image of the micropatterns of streptavidin by the $Ga^+$ and $Au^+$ ion beams. The findings herein suggest that using cluster-ion analysis beams and multivariate data analysis for TOF-SIMS chemical imaging would be an effectual method for producing label-free chemical images of micropatterns of biomolecules, including proteins and cells.

Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks I - Classification of Fluorescence Spectra using Self-Organizing Maps - (인공신경망에 의한 생물공정에서 2차원 형광스펙트럼의 분석 I - 자기조직화망에 의한 형광스펙트럼의 분류 -)

  • Lee Kum-Il;Yim Yong-Sik;Kim Chun-Kwang;Lee Seung-Hyun;Chung Sang-Wook;Rhee Jong Il
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.291-298
    • /
    • 2005
  • Two-dimensional (2D) spectrofluorometer is often used to monitor various fermentation processes. The change in fluorescence intensities resulting from various combinations of excitation and emission wavelengths is investigated by using a spectra subtraction technique. But it has a limited capacity to classify the entire fluorescence spectra gathered during fermentations and to extract some useful information from the data. This study shows that the self-organizing map (SOM) is a useful and interpretative method for classification of the entire gamut of fluorescence spectral data and selection of some combinations of excitation and emission wavelengths, which have useful fluorometric information. Some results such as normalized weights and variances indicate that the SOM network is capable of interpreting the fermentation processes of S. cerevisiae and recombinant E. coli monitored by a 2D spectrofluorometer.

Bio-inspired Node Selection and Multi-channel Transmission Algorithm in Wireless Sensor Networks (무선 센서망에서 생체시스템 기반의 전송노드 선택 및 다중 채널 전송 알고리즘)

  • Son, Jae Hyun;Yang, Yoon-Gi;Byun, Hee-Jung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.5
    • /
    • pp.1-7
    • /
    • 2014
  • WireWireless sensor networks(WSNs) are generally comprised of densely deployed sensor nodes, which causes highly redundant sensor data transmission and energy waste. Many studies have focused on energy saving in WSNs. However, delay problem also should be taken into consideration for mission-critical applications. In this paper, we propose a BISA (Bio-Inspired Scheduling Algorithm) to reduce the energy consumption and delay for WSNs inspired by biological systems. BISA investigates energy-efficient routing path and minimizes the energy consumption and delay using multi-channel for data transmission. Through simulations, we observe that the BISA archives energy efficiency and delay guarantees.

A Machine Learning Approach for Stress Status Identification of Early Childhood by Using Bio-Signals (생체신호를 활용한 학습기반 영유아 스트레스 상태 식별 모델 연구)

  • Jeon, Yu-Mi;Han, Tae Seong;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.1-18
    • /
    • 2017
  • Recently, identification of the extremely stressed condition of children is an essential skill for real-time recognition of a dangerous situation because incidents of children have been dramatically increased. In this paper, therefore, we present a model based on machine learning techniques for stress status identification of a child by using bio-signals such as voice and heart rate that are major factors for presenting a child's emotion. In addition, a smart band for collecting such bio-signals and a mobile application for monitoring child's stress status are also suggested. Specifically, the proposed method utilizes stress patterns of children that are obtained in advance for the purpose of training stress status identification model. Then, the model is used to predict the current stress status for a child and is designed based on conventional machine learning algorithms. The experiment results conducted by using a real-world dataset showed that the possibility of automated detection of a child's stress status with a satisfactory level of accuracy. Furthermore, the research results are expected to be used for preventing child's dangerous situations.

A retroviral insertion in the tyrosinase (TYR) gene is associated with the recessive white plumage color in the Yeonsan Ogye chicken

  • Cho, Eunjin;Kim, Minjun;Manjula, Prabuddha;Cho, Sung Hyun;Seo, Dongwon;Lee, Seung-Sook;Lee, Jun Heon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.751-758
    • /
    • 2021
  • The recessive white (locus c) phenotype observed in chickens is associated with three alleles (recessive white c, albino ca, and red-eyed white cre) and causative mutations in the tyrosinase (TYR) gene. The recessive white mutation (c) inhibits the transcription of TYR exon 5 due to a retroviral sequence insertion in intron 4. In this study, we genotyped and sequenced the insertion in TYR intron 4 to identify the mutation causing the unusual white plumage of Yeonsan Ogye chickens, which normally have black plumage. The white chickens had a homozygous recessive white genotype that matched the sequence of the recessive white type, and the inserted sequence exhibited 98% identity with the avian leukosis virus ev-1 sequence. In comparison, brindle and normal chickens had the homozygous color genotype, and their sequences were the same as the wild-type sequence, indicating that this phenotype is derived from other mutation(s). In conclusion, white chickens have a recessive white mutation allele. Since the size of the sample used in this study was limited, further research through securing additional samples to perform validation studies is necessary. Therefore, after validation studies, a selection system for conserving the phenotypic characteristics and genetic diversity of the population could be established if additional studies to elucidate specific phenotype-related genes in Yeonsan Ogye are performed.

A Needs Analysis of Educational Content for Overseas Job Applicants in the Digital Bio-health Industry

  • Soobok Lee;Wootaek Lim
    • Physical Therapy Korea
    • /
    • v.30 no.3
    • /
    • pp.230-236
    • /
    • 2023
  • Background: The globalization of the healthcare industry and the increasing demand for skilled professionals in the global healthcare industry have opened up opportunities for specialized biotech healthcare professionals to seek overseas employment and career advancement. Objects: This study aimed to develop educational content essential for the overseas employment of digital bio-health professionals. Methods: A survey was conducted among 196 participants. Google Forms (Google) were utilized to create and administer the survey, employing purposive sampling, a non-probability sampling method. Data analysis was performed using IBM SPSS 25.0 (IBM Co.), including Cronbach's α and independent sample t-tests to assess significant differences. Results: About half of college students are interested in overseas employment and international careers, while the other half had not. The most common reason for wanting to work or go overseas was "foreign experience will be useful for future activities in Korea." Students who had experience taking courses from the Bio-health Convergence Open Sharing University preferred overseas programs more than those who did not have that experience. In terms of the degree of desire for overseas education courses provided by universities, contents related to human health were the highest, followed by bio-health big data. Conclusion: Many students wanted to work and go overseas if there is sufficient support from the university. The findings in this study suggest that universities are necessary to play an important role in supporting students' aspirations to work or go overseas by providing language education, education and training programs, information on overseas jobs, and mentoring programs.

Introduction of the Korea BioData Station (K-BDS) for sharing biological data

  • Byungwook Lee;Seungwoo Hwang;Pan-Gyu Kim;Gunwhan Ko;Kiwon Jang;Sangok Kim;Jong-Hwan Kim;Jongbum Jeon;Hyerin Kim;Jaeeun Jung;Byoung-Ha Yoon;Iksu Byeon;Insu Jang;Wangho Song;Jinhyuk Choi;Seon-Young Kim
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.12.1-12.8
    • /
    • 2023
  • A wave of new technologies has created opportunities for the cost-effective generation of high-throughput profiles of biological systems, foreshadowing a "data-driven science" era. The large variety of data available from biological research is also a rich resource that can be used for innovative endeavors. However, we are facing considerable challenges in big data deposition, integration, and translation due to the complexity of biological data and its production at unprecedented exponential rates. To address these problems, in 2020, the Korean government officially announced a national strategy to collect and manage the biological data produced through national R&D fund allocations and provide the collected data to researchers. To this end, the Korea Bioinformation Center (KOBIC) developed a new biological data repository, the Korea BioData Station (K-BDS), for sharing data from individual researchers and research programs to create a data-driven biological study environment. The K-BDS is dedicated to providing free open access to a suite of featured data resources in support of worldwide activities in both academia and industry.

Design and Implementation of Ubiquitous Sensor Network System for Monitoring the Bio-information and Emergency of the Elderly in Silver Town

  • Choi, Seong-Ho;Park, Hyung-Kun;Yu, Yun-Seop
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.219-222
    • /
    • 2010
  • An ubiquitous sensor network (USN) system to monitor the bio information and the emergency of the elderly in the silver town is presented. The USN system consists of the sensor node platforms based on MCU of Atmage128L and RF Chip of CC2420 satisfying IEEE 802.15.4, which includes the bios sensor module such as the electrocardiogram (ECG) sensor and the temperature sensor. Additionally, when an emergency of the elderly is occurred in the silver town, the routing algorithm suitable to find and inform the location of the elderly is proposed, and the proposed routing algorithm is applied to the USN. To collect and manage the ECG data at the PC connected to the sink node, LabView software is used. The bio information and the emergency of the elderly can also be monitored at the client PC by TCP/IP networks in the USN system.