• Title/Summary/Keyword: Bio-Conjugation

Search Result 25, Processing Time 0.022 seconds

Enantioselective Recognition of Amino Alcohols and Amino Acids by Chiral Binol-Based Aldehydes with Conjugated Rings at the Hydrogen Bonding Donor Sites

  • Kim, Ji-Young;Nandhakumar, Raju;Kim, Kwan-Mook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1263-1267
    • /
    • 2011
  • Novel binol-based uryl and guanidinium receptors having higher ring conjugation at the periphery of the hydrogen bonding donor sites have been synthesized and utilized to study the enantioselective recognition of 1,2-aminoalcohols and chirality conversion of natural amino acids via imine bond formation. There is a remarkable decrease in the stereoselectivites as the conjugation increases at the periphery of hydrogen bonding donor sites. The guanidinium-based receptors show more selectivity towards the amino alcohol than that of the uryl based ones due to its charge reinforced hydrogen bonds. The conversion efficiency of L-amino acids to Damino acids by the uryl-based receptors is higher than that of the guanidinium-based ones.

Synthesis of Conjugated Linoleic Acid Methylester using Heterogeneous Catalysts (불균일계 촉매에 의한 공액 리놀레산 메틸에스테르의 합성)

  • Yuk, Jeong-Suk;Lee, Sang-Jun;Kim, Nam-Kyun;Kim, Young-Wun;Yoon, Byeong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.291-298
    • /
    • 2013
  • Conjugated linoleic acid methylester was synthesized through isomerization of linoleic acid methylester by using heterogeneous catalysts. As for heterogeneous catalysts, Ni supported zeolite type catalysts were used. H zoelite Y (HY) were ion exchanged with KCl aqueous solution to synthesize K zeolite Y (KY), and with impregnation method, Ni supported zeolite catalysts were synthesized. Catalysts were used after pre-treatment by using hydrogen. HY catalysts showed a high conversion at low temperatures; but a low selectivity for conjugation reaction. KY catalysts showed a low conversion at low temperatures; but a similar conversion with HY catalysts at high temperatures while a high selectivity at low temperatures. As a result, 4 wt% Ni/KY720 recorded the high conjugation yield of 63.4% at 220.

A chemical conjugate between HER2-targeting antibody fragment and Pseudomonas exotoxin A fragment demonstrates cytotoxic effects on HER2-expressing breast cancer cells

  • Lee, Sunju;Park, Sangsu;Nguyen, Minh Tan;Lee, Eunyoung;Kim, Julee;Baek, Sangki;Kim, Chong Jai;Jang, Yeon Jin;Choe, Han
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.496-501
    • /
    • 2019
  • Conventionally, immunotoxins have been produced as a single polypeptide from fused genes of an antibody fragment and a toxin. In this study, we adopted a unique approach of chemical conjugation of a toxin protein and an antibody fragment. The two genes were separately expressed in Escherichia coli and purified to high levels of purity. The two purified proteins were conjugated using a chemical linker. The advantage of this approach is its ability to overcome the problem of low recombinant immunotoxin production observed in some immunotoxins. Another advantage is that various combinations of immunotoxins can be prepared with fewer efforts, because the chemical conjugation of components is relatively simpler than the processes involved in cloning, expression, and purification of multiple immunotoxins. As a proof of concept, the scFv of trastuzumab and the PE24 fragment of Pseudomonas exotoxin A were separately produced using E. coli and then chemically crosslinked. The new immunotoxin was tested on four breast cancer cell lines variably expressing HER2. The chemically crosslinked immunotoxin exhibited cytotoxicity in proportion to the expression level of HER2. In conclusion, the present study revealed an alternative method of generating an immunotoxin that could effectively reduce the viability of HER2-expressing breast cancer cells. These results suggest the effectiveness of this method of immunotoxin crosslinking as a suitable alternative for producing immunotoxins.

Development of succinate producing Cellulomonas flavigena mutants with deleted succinate dehydrogenase gene

  • Lee, Heon-Hak;Jeon, Min-Ki;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • This study was performed to produce succinic acid from biomass by developing mutants of Cellulomonas flavigena in which the succinate dehydrogenase gene (sdh) is deleted. For development of succinate producing mutants, the upstream and downstream regions of sdh gene from C. flavigena and antibiotic resistance gene (neo, bla) were inserted into pKC1139, and the recombinant plasmids were transformed into Escherichia coli ET12567/pUZ8002 which is a donor strain for conjugation. C. flavigena was conjugated with the transformed E. coli ET12567/pUZ8002 to induce the deletion of sdh in chromosome of this bacteria by double-crossover recombination. Two mutants (C. flavigena H-1 and H-2), in which sdh gene was deleted in the chromosome, were constructed and confirmed by PCR. To estimate the production of succinic acid by the two mutants when the culture broth was fermented with biomass such as CMC, xylan, locust gum, and rapeseed straw; the culture broth was analyzed by HPLC analysis. The succinic acid in the culture broth was not detected as a fermentation products of all biomass. One of the reasons for this may be the conversion of succinic acid to fumaric acid by sdh genes (Cfla_1014 - Cfla_1017 or Cfla_1916 - Cfla_1918) which remained in the chromosomal DNA of C. flavigena H-1 and H-2. The other reason could be the conversion of succinyl-CoA to other metabolites by enzymes related to the bypass pathway of TCA cycle.

The Modification of Exocyclic Ketone on Methyl(Pyro) pheophorbide-a and Influence with Visible Spectra

  • Wang, Jin-Jun;Han, Guang-Fan;Shim, Young-Key
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.23-25
    • /
    • 2001
  • The methyl pheophorbide-a (MP-a) and methyl pyropheophorbide-a (MPP-a) were modified by reaction of exocyclic ketone in E-ring with nucleophilic reagent and several chlorin derivatives were synthesized. The change of the structure in E-ring served an expanding conjugation region and introduction of electron-withdrawing group, which strongly influenced the visible spectra. The Qy bands of synthesized compounds were affected by the substituents on the Qy axis(N$\sub$21/-N$\sub$23/).

  • PDF

Gene Transfer Optimization via E. coli-driven Conjugation in Nocardiopsis Strain Isolated via Genome Screening (유전체 스크리닝으로 선별된 Nocardiopsis 균주의 대장균 접합을 통한 유전자 도입전략 최적화)

  • Jeon, Ho-Geun;Lee, Mi-Jin;Kim, Hyun-Bum;Han, Kyu-Boem;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.104-110
    • /
    • 2011
  • Actinomycetes, Gram positive soil bacteria, are valuable microorganisms which produce useful secondary metabolites including antibiotics, antiparasitic substances, anti-cancer drugs, and immunosuppressants. Although a major family of actinomycetes, known as streptomycetes, has been intensively investigated at the molecular level for several decades, a potentially valuable and only recently isolated non-streptomycetes rare actinomycetes (NSRA) family has been poorly characterized due to lack of proper genetic manipulation systems. Here we report that a PCR-based genome screening strategy was performed with approximately 180 independently isolated actinomycetes strains to isolate potentially valuable NSRA strains. Thanks to this simple PCR-based genome screening strategy we were able to identify only seven NSRA strains, followed by 16S rRNA sequencing for confirmation. Through further bioassays, one potentially valuable NSRA strain (tentatively named Nocardiopsis species MMBL010) was identified which possessed both antifungal and antibacterial activities, along with the presence of polyketide synthase and non-ribosomal peptide synthase genes. Moreover, Nocardiopsis species MMBL010, which was intrinsically recalcitrant to genetic manipulation, was successfully transformed via E. coli-driven conjugation. These results suggest that PCR-based genome screening, followed by the establishment of an E. coli-driven conjugation system, is an efficient strategy to maximize potentially valuable compounds and their biosynthetic genes from NSRA strains isolated from various environments.

Different Influences of Biotinylation and PEGylation on Cationic and Anionic Proteins for Spheroid Penetration and Intracellular Uptake to Cancer Cells

  • Jung, Won Ho;You, Gayeon;Mok, Hyejung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1209-1216
    • /
    • 2022
  • To better understand the effects of PEGylation and biotinylation on the delivery efficiency of proteins, the cationic protein lysozyme (LZ) and anionic protein bovine serum albumin (BSA) were chemically conjugated with poly(ethylene glycol) (PEG) and biotin-PEG to primary amine groups of proteins using N-hydroxysuccinimide reactions. Four types of protein conjugates were successfully prepared: PEGylated LZ (PEG-LZ), PEGylated BSA (PEG-BSA), biotin-PEG-conjugated LZ (Bio-PEG-LZ), and biotin-PEG-conjugated BSA (Bio-PEG-BSA). PEG-LZ and Bio-PEG-LZ exhibited a lower intracellular uptake than that of LZ in A549 human lung cancer cells (in a two-dimensional culture). However, Bio-PEG-BSA showed significantly improved intracellular delivery as compared to that of PEG-BSA and BSA, probably because of favorable interactions with cells via biotin receptors. For A549/fibroblast coculture spheroids, PEG-LZ and PEG-BSA exhibited significantly decreased tissue penetration as compared with that of unmodified proteins. However, Bio-PEG-BSA showed tissue penetration comparable to that of unmodified BSA. In addition, citraconlyated LZ (Cit-LZ) showed reduced spheroid penetration as compared to that of LZ, probably owing to a decrease in protein charge. Taken together, chemical conjugation of targeting ligands-PEG to anionic proteins could be a promising strategy to improve intracellular delivery and in vivo activity, whereas modifications of cationic proteins should be more delicately designed.

Role of Glutathione Conjugation in 1-Bromobutane-induced Immunotoxicity in Mice

  • Lee, Sang-Kyu;Lee, Dong-Ju;Jeon, Tae-Won;Ko, Gyu-Sub;Yoo, Se-Hyun;Ha, Hyun-Woo;Kang, Mi-Jeong;Kang, Won-Ku;Kim, Sang-Kyum;Jeong, Tae-Cheon
    • Toxicological Research
    • /
    • v.26 no.2
    • /
    • pp.101-108
    • /
    • 2010
  • Halogenated organic compounds, such as 1-bromobutane (1-BB), have been used as cleaning agents, agents for chemical syntheses or extraction solvents in workplace. In the present study, immunotoxic effects of 1-BB and its conjugation with glutathione (GSH) were investigated in female BALB/c mice. Animals were treated orally with 1-BB at 375, 750 and 1500 mg/kg in corn oil once for dose response or treated orally with 1-BB at 1500 mg/kg for 6, 12, 24 and 48 hr for time course. S-Butyl GSH was identified in spleen by liquid chromatography-electrospray ionization tandem mass spectrometry. Splenic GSH levels were significantly reduced by single treatment with 1-BB. S-Butyl GSH conjugates were detected in spleen from 6 hr after treatment. Oral 1-BB significantly suppressed the antibody response to a T-dependent antigen and the production of splenic intracellular interlukin-2 in response to Con A. Our present results suggest that 1-BB could cause immunotoxicity as well as reduction of splenic GSH content, due to the formation of GSH conjugates in mice. The present results would be useful to understand molecular toxic mechanism of low molecular weight haloalkanes and to develop biological markers for exposure to haloalkanes.

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.

Phage Assembly Using APTES-Conjugation of Major Coat p8 Protein for Possible Scaffolds

  • Kim, Young Jun;Korkmaz, Nuriye;Nam, Chang Hoon
    • Interdisciplinary Bio Central
    • /
    • v.4 no.3
    • /
    • pp.9.1-9.7
    • /
    • 2012
  • Filamentous phages have been in the limelight as a new type of nanomaterial. In this study, genetically and chemically modified fd phage was used to generate a biomimetic phage self-assembly product. Positively charged fd phage (p8-SSG) was engineered by conjugating 3-aminopropyltriethoxysilane (APTES) to hydroxyl groups of two serine amino acid residues introduced at the N-terminus of major coat protein, p8. In particular, formation of a phage network was controlled by changing mixed ratios between wild type fd phage and APTES conjugated fd-SSG phage. Assembled phages showed unique bundle and network like structures. The bacteriophage based self-assembly approach illustrated in this study might contribute to the design of three dimensional microporous structures. In this work, we demonstrated that the positively charged APTES conjugated fd-SSG phages can assemble into microstructures when they are exposed to negatively charged wild-type fd phages through electrostatic interaction. In summary, since we can control the phage self-assembly process in order to obtain bundle or network like structures and since they can be functionalized by means of chemical or genetic modifications, bacteriophages are good candidates for use as bio-compatible scaffolds. Such new type of phage-based artificial 3D architectures can be applied in tuning of cellular structures and functions for tissue engineering studies.