Acknowledgement
This study was supported by a grant (NRF-2020R1A2B5B01001677) from the National Research Foundation, funded by the Ministry of Education, Science, and Technology.
References
- Hansen-Bruhn M, de Avila BEF, Beltran-Gastelum M, Zhao J, Ramirez-Herrera DE, Angsantikul P, et al. 2018. Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew. Chem. Int. Edit. 57: 2657-2661. https://doi.org/10.1002/anie.201713082
- Li L, Park YR, Shrestha SK, Cho HK, Soh Y. 2020. Suppression of inflammation, osteoclastogenesis and bone loss by PZRAS extract. J. Microbiol. Biotechnol. 30: 1543-1551. https://doi.org/10.4014/jmb.2004.04016
- Kim IW, Choi RY, Lee JH, Seo M, Lee HJ, Kim MA, et al. 2021. Anticancer activity of periplanetasin-5, an antimicrobial peptide from the cockroach periplaneta americana. J. Microbiol. Biotechnol. 31: 1343-1349. https://doi.org/10.4014/jmb.2104.04040
- Wagner AM, Gran MP, Peppas NA. 2018. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm. Sin. B. 8: 147-164. https://doi.org/10.1016/j.apsb.2018.01.013
- Shi JJ, Kantoff PW, Wooster R, Farokhzad OC. 2017. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17: 20-37. https://doi.org/10.1038/nrc.2016.108
- Lee YW, Luther DC, Kretzmann JA, Burden A, Jeon T, Zhai SM, et al. 2019. Protein delivery into the cell cytosol using non-viral nanocarriers. Theranostics 9: 3280-3292. https://doi.org/10.7150/thno.34412
- Lv J, Fan QQ, Wang H, Cheng YY. 2019. Polymers for cytosolic protein delivery. Biomaterials 218: 119358 https://doi.org/10.1016/j.biomaterials.2019.119358
- Strohl WR. 2015. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs 29: 215-239. https://doi.org/10.1007/s40259-015-0133-6
- Hussain Z, Khan S, Imran M, Sohail M, Shah SWA, de Matas M. 2019. PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv. Transl. Res. 9: 721-734. https://doi.org/10.1007/s13346-019-00631-4
- Shi LW, Zhang JQ, Zhao M, Tang SK, Cheng X, Zhang WY, et al. 2021. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale 13: 10748-10764. https://doi.org/10.1039/D1NR02065J
- Xiong JL, Chu JCH, Fong WP, Wong CTT, Ng DKP. 2022. Specific activation of photosensitizer with extrinsic enzyme for precisive photodynamic therapy. J. Am. Chem. Soc. 144: 10647-10658. https://doi.org/10.1021/jacs.2c04017
- Luther DC, Lee YW, Nagaraj H, Clark V, Jeon T, Goswami R, et al. 2022. Cytosolic protein delivery using modular biotin-streptavidin assembly of nanocomposites. ACS Nano 16: 7323-7330. https://doi.org/10.1021/acsnano.1c06768
- Ren DM, Kratz F, Wang SW. 2014. Engineered drug-protein nanoparticle complexes for folate receptor targeting. Biochem. Eng J. 89: 33-41. https://doi.org/10.1016/j.bej.2013.09.008
- Yu J, He XD, Zhang QF, Zhou DF, Wang ZG, Huang YB. 2022. Iodine conjugated Pt(IV) nanoparticles for precise chemotherapy with iodine-Pt guided computed tomography imaging and biotin-mediated tumor-targeting. ACS Nano 16: 6835-6846. https://doi.org/10.1021/acsnano.2c01764
- Deshpande NU, Jayakannan M. 2018. Biotin-tagged polysaccharide vesicular nanocarriers for receptor-mediated anticancer drug delivery in cancer cells. Biomacromolecules 19: 3572-3585. https://doi.org/10.1021/acs.biomac.8b00833
- Hawe A, Hulse WL, Jiskoot W, Forbes RT. 2011. Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates. Pharm. Res. 28: 2302-2310. https://doi.org/10.1007/s11095-011-0460-3
- Barbosa LRS, Ortore MG, Spinozzi F, Mariani P, Bernstorff S, Itri R. 2010. The importance of protein-protein interactions on the pH-induced conformational changes of bovine serum albumin: a small angle x-ray scattering study. Biophys. J. 98: 147-157. https://doi.org/10.1016/j.bpj.2009.09.056
- Ren WX, Han JY, Uhm S, Jang YJ, Kang C, Kim JH, et al. 2015. Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chem. Commun. 51: 10403-10418. https://doi.org/10.1039/C5CC03075G
- Swetha KL, Roy A. 2018. Tumor heterogeneity and nanoparticle-mediated tumor targeting: the importance of delivery system personalization. Drug Deliv. Transl. Res. 8: 1508-1526. https://doi.org/10.1007/s13346-018-0578-5
- Nashimoto Y, Okada R, Hanada S, Arima Y, Nishiyama K, Miura T, et al. 2020. Vascularized cancer on a chip: the effect of perfusion on growth and drug delivery of tumor spheroid. Biomaterials 229: 119547. https://doi.org/10.1016/j.biomaterials.2019.119547
- Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S. 2008. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319: 210-213. https://doi.org/10.1126/science.1152066
- Ma YQ, Poole K, Goyette J, Gaus K. 2017. Introducing membrane charge and membrane potential to T cell signaling. Front. Immunol. 8: 1513. https://doi.org/10.3389/fimmu.2017.01513
- Saadat M, Zahednezhad F, Zakeri-Milani P, Heidari HR, Shahbazi-Mojarrad J, Valizadeh H. 2019. Drug targeting strategies based on charge dependent uptake of nanoparticles into cancer cells. J. Pharm. Pharm. Sci. 22: 191-220. https://doi.org/10.18433/jpps30318
- Patel SG, Sayers EJ, He L, Narayan R, Williams TL, Mills EM, et al. 2019. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci. Rep. 9: 6298. https://doi.org/10.1038/s41598-019-42456-8
- Meng F, Wang J, He Y, Cresswell GM, Lanman NA, Lyle LT, et al. 2022. A single local delivery of paclitaxel and nucleic acids via an immunoactive polymer eliminates tumors and induces antitumor immunity. Proc. Natl. Acad. Sci. USA 119: e2122595119. https://doi.org/10.1073/pnas.2122595119
- Kuen J, Darowski D, Kluge T, Majety M. 2017. Pancreatic cancer cell/fibroblast co-culture induces M2 like macrophages that influence therapeutic response in a 3D model. PLoS One 12: e0182039. https://doi.org/10.1371/journal.pone.0182039
- Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJ, Weiner LM, et al. 2011. Influence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Cancer Res. 71: 2250-2259.
- Kim Y, Mok H. 2019. Citraconylated exosomes for improved internalization into macrophages. Appl. Biol. Chem. 62: 26. https://doi.org/10.1186/s13765-019-0433-5
- Awaad A, Takemoto H, Iizuka M, Ogi K, Mochida Y, Ranneh AH, et al. 2022. Changeable net charge on nanoparticles facilitates intratumor accumulation and penetration. J. Control Release 346: 392-404. https://doi.org/10.1016/j.jconrel.2022.04.025