• 제목/요약/키워드: Bio safety level

검색결과 138건 처리시간 0.031초

인삼 및 산양삼의 부위별 유해중금속 분포 특성 (Distribution Characteristics of Hazardous Heavy Metals in Ginseng and Wood-cultivated Ginseng)

  • 양승현;이태우;이재인;최훈
    • 한국식품위생안전성학회지
    • /
    • 제34권4호
    • /
    • pp.325-333
    • /
    • 2019
  • 본 연구는 인삼과 산양삼의 부위별 중금속 분포양상을 조사하여 중금속 식이노출 저감화 방안을 모색하고자 하였다. 인삼과 산양삼은 지역별 배분을 통해 각각 14개 지역 및 5개 지역에서 시료를 채취하였으며, 각 부위별 중량 및 중금속 함량을 분석하였다. 중금속 분석을 위해 microwave 장치를 이용해 전처리한 후 납, 카드뮴 및 비소는 ICP-MS로 측정하고 알루미늄은 ICP를 이용한 분석법을 확립하였다. 인삼의 겉껍질은 전체의 16.2% 중량비를 차지하였으며, 산양삼의 겉껍질 및 잔뿌리는 각각 전체의 21.8%, 16.8%의 중량비를 차지하였다. 각 부위별 중량비와 중금속 농도를 고려하여 각 부위별 중금속 분포도를 산출하였다. 인삼 및 산양삼의 겉껍질은 전체에 차지하는 중량비에 비해 높은 중금속 함유량을 보이고 있었으며, 인삼의 경우 납의 40.3%, 카드뮴 25.9%, 비소 47.6%, 알루미늄 89.9%가 겉껍질에 잔존하고 있었으며 산양삼의 경우 납 27.2%, 카드뮴 28.2%, 비소 48.3%, 알루미늄 56.8%가 겉껍질에 존재하였다. 알루미늄을 제외하고 산양삼의 잔뿌리내 중금속 분포량은 겉껍질과 유의적 차이가 없었다. 따라서, 인삼 및 산양삼의 겉껍질을 벗기고 섭취한다면 중금속 식이노출량을 크게 줄일 수 있음을 확인하였다.

Ammonium nitrate의 유해성과 작업환경 관리 (Hazards and Workplace Management of Ammonium nitrate)

  • 김현영;황양인;국원근
    • 한국산업보건학회지
    • /
    • 제22권3호
    • /
    • pp.235-243
    • /
    • 2012
  • Objectives: The purpose of this study is the work environment management method through risk assessment and investigation of the work place that deals with Ammonium nitrate, based on information in and outside the country. Methods: This study suggests method of work environment management through risk assessment and investigation of the work place that deals with Ammonium nitrate, and finds out cases of Ammonium nitrate causing hazard, danger and health risk, based on literature investigation. Results: Rats exposed repeatedly to $LD_{50}$ 2,217 mg/kg(rat), $LC_{50}$ 88.8 mg/L(rat, skin) which cause high level of skin irritation, reported 1 $mg/m^3$ of NOAEL, while LOAEL was less than 100 mg/kg for the rats orally administered with the $LD_{50}$ 2,217 mg/kg(rat), $LC_{50}$ 88.8 mg/L(rat, skin), for 13 weeks. Domestically 31,640 ton/y of ammonium nitrate has been used in 22 workplace and the result of workplace assessment was 0.0171-0.9983 $mg/m^3$. ADD was 8.77-59.63 ${\mu}g/kg-day$ according to the exposure scenario. In other words the result of the risk assessment goes beyond the 'standard 1'. Conclusions: Ammonium nitrate creates a high level of irritation and toxicity when coming in breathe it or contact with skin, and is classified as category3 of GHS and specific target organ toxicant (irritating respiratory system). Exposure level at work places needs to be maintained under $1mg/m^3$, to prevent workers from being damaged.

당뇨유발 흰쥐에 있어서 산화적 스트레스에 대한 함박잎새버섯의 효과 (Effects of Hanbag Mushroom(Grifola frondosa) on Oxidative Stress in Diabetic Rats)

  • 이순이;이창윤;박영철;김종봉
    • 생명과학회지
    • /
    • 제17권11호
    • /
    • pp.1571-1575
    • /
    • 2007
  • 본 연구는 당뇨병으로 인한 산화적 스트레스에 대한 함박잎새버섯분말의 효과를 밝히기 위하여 SD계 흰쥐를 STZ로 당뇨를 유발하여 간 및 신장 조직에서 조사하였다. 또한 당뇨흰쥐에 함박잎새버섯분말 1-2% 첨가하여 6주간 식이하였다. 산화적 스트레스의 지표물질인 LPO를 비롯하여 유발원 XOD 활성도를 측정하였다. 또한 이에 따른 간조직 손상 확인을 위해 혈청 ALT와 AST 활성도를 측정하였다. 특히 함박잎새버섯분말의 항산화적 효능을 위해 이들 지표물질들과 더불어 항산화체계의 중요 요소인 GSH 농도와 GST 활성도를 당뇨군, 당뇨-잎새버섯분말투여군 그리고 정상군에서 측정하였다. 당뇨군은 정상군과 비교하여 LPO 농도를 비롯하여 XOD 활성도가 유의하게 높았다. 특히 이러한 결과로 추정되는 간 조직 손상이 정상군보다 유의하게 높은 ALT 및 AST 활성도가 혈청에서 확인되었다. 그러나 당뇨-잎새버섯분말투여군에서는 LPO 농도, XOD 활성도를 비롯하여 조직손상의 지표인 ALT 및 AST 활성도가 당뇨군보다 유의하게 감소하였다. 항산화물질인 GSH 농도는 당뇨군 및 당뇨-잎새버섯분말투여군 비교에서 유의한 차이가 없었으나 GST 활성도는 당뇨-잎새버섯분말투여군이 당뇨군보다 유의하게 높았다. 따라서 당뇨유발성 산화적 스트레스에 대한 잎새버섯분말의 효능은 GSH 농도 변화보다 GST 활성도를 증가시키고 또한 산화적 스트레스의 유발원인 XOD 활성도 감소의 유도를 통해 이루어지는 것으로 추정된다. 결론적으로 당뇨는 산화적 스트레스를 증가시키며 조직손상을 유발한다. 그러나 함박잎새버섯분말은 항산화물질 및 효소계의 활성도를 증가시켜 당뇨유발-산화적 스트레스 감소를 유도하여 조직 손상을 감소시키는 것이 확인되었다.

Risk Assessment of Ethylhexyl Dimethyl PABA in Cosmetics

  • Sung, Chi Rim;Kim, Kyu-Bong;Lee, Joo Young;Lee, Byung-Mu;Kwack, Seung Jun
    • Toxicological Research
    • /
    • 제35권2호
    • /
    • pp.131-136
    • /
    • 2019
  • Ethylhexyl dimethyl para-aminobenzoic acid (PABA) is an oily yellow liquid derivative of water-soluble PABA commonly used in sunscreen. Ethylhexyl dimethyl PABA is widely used as an ingredient in many cosmetics at an average concentration of 1.25% (0.5-2.0%) in Korea. Previous studies, including those involving animals, have demonstrated that ethylhexyl dimethyl PABA is toxic to the following four organs: testis, epididymis, spleen, and liver. In addition, experiments using human keratinocytes found that ethylhexyl dimethyl PABA inhibits cell growth and DNA synthesis at low concentrations, and halted the cell cycle of MM96L cells (human melanoma cell line) at the G1 phase. Despite limited clinical data in humans, many studies have confirmed increased mutagenicity of ethylhexyl dimethyl PABA following exposure to sunlight, which suggests that this molecule is likely to contribute to onset of sun-induced cancer despite protecting the skin through absorption of UVB. For risk assessment, the no observed adverse effect level (NOAEL) chosen was 100 mg/kg bw/day in a 4 weeks oral toxicity study. Systemic exposure dosage (SED) was 0.588 mg/kg bw/day for maximum use of ethylhexyl dimethyl PABA in cosmetics. Based on the risk assessment and exposure scenarios conducted in this study, the margin of safety (MOS) was calculated to be 180.18 for a sunscreen containing 8% ethylhexyl dimethyl PABA, which is the maximum level allowed by the relevant domestic authorities.

Expression of Codon Optimized β2-Adrenergic Receptor in Sf9 Insect Cells for Multianalyte Detection of β-Agonist Residues in Pork

  • Liu, Yuan;Wang, Jian;Liu, Yang;Yang, Liting;Zhu, Xuran;Wang, Wei;Zhang, Jiaxiao;Wei, Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1470-1477
    • /
    • 2019
  • ${\beta}_2$-adrenergic receptor (${\beta}_2-AR$) was expressed efficiently using Bac-to-Bac Baculovirus Expression System in Sf9 cells as a bio-recognition element for multianalyte screening of ${\beta}$-agonist residues in pork. Sf9 cells were selected as the expression system, and codon optimization of wild-type nucleic acid sequence and time-dependent screening of expression conditions were then carried out for enhancing expression level and biological activity. Under optimum conditions of multiplicity of infection (MOI) = 5 and 48 h post transfection, the protein yield was up to 1.23 mg/ml. After purification by chromatographic techniques, the purified recombinant protein was applied to develop a direct competitive enzyme-linked receptor assay (ELRA) and the efficiency and reliability of the assay was determined. The IC50 values of clenbuterol, salbutamol, and ractopamine were 28.36, 50.70, and $59.57{\mu}g/l$, and clenbuterol showed 47.61% and 55.94% cross-reactivities with ractopamine and salbutamol, respectively. The limit of detection (LOD) was $3.2{\mu}g/l$ and the relevant recoveries in pork samples were in the range of 73.0-91.2%, 69.4-84.6%, and 63.7-80.2%, respectively. The results showed that it had better performance compared with other present nonradioactive receptorbased assays, indicating that the genetically modified ${\beta}_2-AR$ would have great application potential in detection of ${\beta}$-agonist residues.

공간규모별 어촌지역 진단지표 개발 (Development of Diagnostic Indicator in Fishing Villages by Spatial Scale)

  • 조은정;오윤경;배승종;김수진;이상현
    • 농촌계획
    • /
    • 제27권1호
    • /
    • pp.9-20
    • /
    • 2021
  • In order to develop practical indicator that can diagnose the regional conditions and characteristics of fishing villages, this study reviewed domestic and foreign researches and selected the diagnostic indicator of fishing villages by spatial unit. The major categories are divided into population and society, economic conditions, and living conditions. The middle categories consists of population, household, industry, tourism, settlement, environment, safety, health and welfare, education, and culture and leisure. The indicator were selected with reference to the existence of statistical data officially provided according to the spatial range(Si/Gun, eup/myeon, village). Based on the selected indicator, the test evaluation was conducted in Jindo-gun, Jeollanam-do by applying data that can be obtained from KOSIS and web GIS. It is judged that the diagnostic indicator developed through this research can be used in various ways from the planning stage to the implementation stage of the regional development project, such as grasping the current conditions, setting improvement targets, promotion and evaluation/monitoring of the project. In addition, it is expected that it will be possible to carry out regional diagnosis for each spatial unit and to plan and implement regional development projects by giving priority to areas where the level of each department is insufficient.

식육중의 잔류 항생.항균제의 검정에 관한 연구(III) Macrolide계 항생물질인 Erythromycin과 Tylosin의 Gas Chromatography/Mass Spectrometry 동시분석 (A study on the determination of residual Antibiotics and Synthetic Antibacterial Agents in Meat(III) Simultaneous Gas Chromatography/Mass Spectrometry Analysis of Erythromycin and Tylosin)

  • 류재천;송윤선;양종순;서지원;김명수;박종세
    • 한국식품위생안전성학회지
    • /
    • 제8권1호
    • /
    • pp.17-23
    • /
    • 1993
  • In an attempt to quantitate and qualitate residual antibiotics and antibacterial agents n meat simultaneously, we studied a gas chromatogrphy-mass spectrometry (GC/MS) analysis. For a simultaneous analysis of macrolide antibiotics such as erythromycin and tylosin in meat, the homogenization with MeOH, defatting with n-hexane, extraction with CHCl3, elution with CHCl3 : MeOH=2:1 from Sep-Pak silica cartridge, acid gydrolysis, back extraction with CHCl3, and quantitation by selected ion monitoring(SIM) mode after trimethylsilyl derivatization were performed. The recoveries of erythromycin and tylosin (CV,%) at 10 ppm fortification level were 90.59(4.89) and 45.91(0.20) , and the detection limits of those were 0.02 and 2.0 $\mu\textrm{g}$/g beef, respectively. From these results, the developed analytical method using GC/MS-SIM mode allows excellent detection and quantitation of residual macrolide antibiotics in meats, using complementary method with bio-assay.

  • PDF

해양생명공학 산업의 현황과 정부지원 방안에 관한 연구 (A study on the status and administrative supports for domestic marine biotechnology industry)

  • 이흥동
    • 해양환경안전학회지
    • /
    • 제8권2호
    • /
    • pp.53-60
    • /
    • 2002
  • Marine biotechnology is one of the promising frontier of scientific exploration and commercial utilization for the next century. Compared with the terrestrial environment, the oceans of the world remain largely unexplored and include a major portion of bio-resources. Using the tools of biotechnology, the vast and diverse marine resources can be applied to produce new products and foods. Marine biotechnology has the characteristics of pro-environment, saying energy, and intensive knowledge. Therefore, we can take advantage of the marine biotechnology industry under our situation with the poor natural resources. The study focuses on the current status and administrative supports on marine biotechnology industry for upgrading the economic value of output. The status of our marine biotechnology industry is beginning stage in the economic aspects. Manpower and the level of most technologies are weaker than the ones of the advanced countries. More investment and recruiting skilled specialists are necessary because the improvement of marine biotechnology is depend on the technology and scientists. This study suggests the ways of administrative supports for domestic marine biotechnology: Efficient information network and supporting system for the development of marine biotechnology should be interrelated with other technical and scientific fields; The government should provide sustainable fund for the long-term research project and the infrastructure in the marine biotechnology.

  • PDF

Tutorial on Drug Development for Central Nervous System

  • Yoon, Hye-Jin;Kim, Jung-Su
    • Interdisciplinary Bio Central
    • /
    • 제2권4호
    • /
    • pp.9.1-9.5
    • /
    • 2010
  • Many neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are devastating disorders that affect millions of people worldwide. However, the number of therapeutic options remains severely limited with only symptomatic management therapies available. With the better understanding of the pathogenesis of neurodegenerative diseases, discovery efforts for disease-modifying drugs have increased dramatically in recent years. However, the process of translating basic science discovery into novel therapies is still lagging behind for various reasons. The task of finding new effective drugs targeting central nervous system (CNS) has unique challenges due to blood-brain barrier (BBB). Furthermore, the relatively slow progress of neurodegenerative disorders create another level of difficulty, as clinical trials must be carried out for an extended period of time. This review is intended to provide molecular and cell biologists with working knowledge and resources on CNS drug discovery and development.

Toxicogenomics and Cell-based Assays for Toxicology

  • Tong, Weida;Fang, Hong;Mendrick, Donna
    • Interdisciplinary Bio Central
    • /
    • 제1권3호
    • /
    • pp.10.1-10.5
    • /
    • 2009
  • Toxicity is usually investigated using a set of standardized animal-based studies which, unfortunately, fail to detect all compounds that induce human adverse events and do not provide detailed mechanistic information of observed toxicity. As an alternative to conventional toxicology, toxicogenomics takes advantage of currently advanced technologies in genomics, proteomics, metabolomics, and bioinformatics to gain a molecular level understanding of toxicity and to enhance the predictive power of toxicity testing in drug development and risk/safety assessment. In addition, there has been a renewed interest, particularly in various government agencies, to prioritize and/or supplement animal testing with a battery of mechanistically informative in vitro assays. This article provides a brief summary of the issues, challenges and lessons learned in these fields and discuss the ways forward to further advance toxicology using these technologies.