• Title/Summary/Keyword: Bio heavy oil

Search Result 23, Processing Time 0.027 seconds

Effect of Activated Carbon and Diatomite on Deodorant Efficiency of Recycled Fly Ash Panel (중유회 탈취패널에 있어서 활성탄과 규조토의 탈취성능 영향평가)

  • Kim, Min-Ho;Kim, Young-Kyu;Han, Kenneth N.;Kim, Se-Jung;Kim, Nam-Soo;Hong, Seong-Yeup;Han, Hyea-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.625-630
    • /
    • 2010
  • This study aims to examine the possible use of heavy oil fly ash as raw material for deodorization panels by adding additives such as activated carbon and diatomite during deodorization panel manufacturing process and improving the performance of formaldehyde and toluene elimination.The recycled heavy oil flyash deodorization panel to be used either of them as additives removed more than 93% of formaldehyde and more than 97% of toluen but the compressive strength was decreased 27 to 63%. In an experiment to be used both additives, Whereas, the panel to include activated carbon 5% and diatomite 5% removed 84% against formaldehyde and 96% against toluen, and the compressive strength was increased 32% better than standard panel. Therefore it could be confirmed that the recycled heavy oil flyash deodorization panel is increased the compressive strength and the removal efficiency against harmful chemical substances by using the additives mixture.

Combustion Characteristics of a Hot Water Boiler System Convertibly Fueled by Rice Husk and Heavy Oil - Heavy Oil Combustion Characteristics -

  • Kim, Myoung Ho;Kim, Dong Sun;Park, Seung Je
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.306-311
    • /
    • 2013
  • Purpose: With the ever-rising energy prices, thermal energy heavily consuming facilities of the agricultural sector such as commercialized greenhouses and large-scale Rice Processing Complexes (RPCs) need to cut down their energy cost if they must run profitable businesses continually. One possible way to reduce their energy cost is to utilize combustible agricultural by-products or low-price oil instead of light oil as the fuel for their boiler systems. This study aims to analyze the heavy oil combustion characteristics of a newly developed hot water boiler system that can use both rice husk and heavy oil as its fuel convertibly. Methods: Heavy oil combustion experiments were conducted in this study employing four fuel feed rates (7.6, 8.5, 9.5, 11.4 $l/h$) at a combustion furnace vacuum pressure of 500 Pa and with four combustion furnace vacuum pressures (375, 500, 625, 750 Pa) at fuel feed rates of 9.5 and 11.4 $l/h$. Temperatures at five locations inside the combustion furnace and 20 additional locations throughout the whole hot water boiler system were measured to ascertain the combustion characteristics of the heavy oil. From the temperature measurement data, the thermal efficiency of the system was calculated. Flue gas smoke density and concentrations of air-polluting components in the flue gas were also measured by a gas analyzer. Results: As the fuel feed rate or combustion furnace vacuum pressure increased, the average temperature in the combustion furnace decreased but the thermal efficiency of the system showed no distinctive change. On the other hand, the thermal efficiency of the system was inversely proportionally to the vacuum level in the furnace. For all experimental conditions, the thermal efficiency remained in the range of 80.1-89.6%. The CO concentration in the flue gas was negligibly low. The NO and $SO_2$ concentration as well as the smoke density met the legal requirements. Conclusions: Considering the combustion temperature characteristics, thermal efficiency, and flue gas composition, the optimal combustion condition of the system seemed to be either the fuel feed rate of 9.5 $l/h$ with a combustion furnace vacuum pressure of 375 Pa or a fuel feed rate of 11.4 $l/h$ with a furnace vacuum pressure between 500 Pa and 625 Pa.

A Study on the Reduction of Particulate Emission Using Oil Soluble Organometallic Compounds as Combustion Improver for Heavy Fuel Oil (중질유 연소시 유용성 유기금속화합물 연소촉진제의 Dust 저감특성)

  • Kim, Dong-Chan;Nho, Nam-Sun;Woo, Je-Kyung;Kim, Jin-Hoon;Lee, Young-Sea
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 2008
  • This study is aimed at substantially reducing the particulate matter (dust) emission during the combustion of heavy fuel in boilers by addition of combustion improver. The combustion improver used were the oil-soluble organometallic compounds that were found to be more effective than the dispersing agents that are generally used for reducing the particulate emission. The dust reduction effect was found to depend on the active materials (metals) as well as on the organic ligand part of organometallic compounds. Acetylacetonoate and naphthenate of Fe and Ca were found to be most effective for dust reduction. Addition of Fe and Ca organometallic compounds as combustion improver in concentration of 30 ppm (metal basis) to heavy fuel oil, caused dust reduction by 50 wt% to 80 wt%.

Evaluation of Petroleum Oil Degrading Mixed Microorganism Agent for the Bioremediation of Petroleum Oil Spilled in Marine Environments (해양유류오염정화를 위한 유류분해 미생물제제의 평가)

  • Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1599-1606
    • /
    • 2011
  • To evaluate the effects of microorganism agents on oil biodegradation, treatability and microcosm studies were conducted. Petroleum oil degrading bacteria were isolated from enriched cultures of oil-contaminated sediment samples using a mineral salts medium (MSM) containing 0.5% Arabian heavy crude oil as the sole carbon source. After a 5 day-incubation period using MSM, mixed microorganisms of three species (strains BS1, BS2 and BS4) degraded 48.4% of aliphatic hydrocarbons and 30.5% of aromatic hydrocarbons. Treatability and microcosm tests were performed in the three different treatment conditions (AO: Arabian heavy crude oil, AO+IN: Arabian heavy crude oil+inorganic nutrient, AO+IN+MM: Arabian heavy crude oil+inorganic nutrient+mixed microorganism agents). Among these, significantly enhanced biodegradation of aliphatic hydrocarbons were observed in AO+IN and AO+IN+MM conditions, without showing any different biodegradation rates in either condition. However, the degradation rates of aromatic hydrocarbons in an AO+IN+MM condition were increased by 50% in the treatability test and by 13% in the microcosm test compared to those in an AO+IN condition. Taken together, it can be concluded that mixed microorganism agents enhance the biodegradation of aliphatic and aromatic hydrocarbons in laboratory, a treatability test, and a microcosm test. This agent could especially be a useful tool in the application of bioremediation for removal of aromatic hydrocarbons.

Combustion Characteristics of Bio Emulsion Fuel (바이오에멀젼 연료의 연소 특성)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1421-1432
    • /
    • 2018
  • Water soluble oil was obtained from the pyrolysis of coconut waste as a biomass at $600^{\circ}C$. It was studied that the combustion characteristics of bio-emulsion fuel by mixing and emulsifying 15~20% of water soluble oil which obtained from pyrolysis of coconut waste as a biomass and MDO(marine diesel oil) as a marine fuel. Engine dynamometer was used for detecting emissions, temperature, and power. The temperature of combustion chamber was decreased because the moisture in bio-emulsion fuel deprived of heat of evaporation in combustion chamber. While combustion, micro-explosion took place in the combustion chamber by water in the bio-emulsion fuel, MDO fuel scattered to micro particles and it caused to smoke reduction. The temperature reduction of combustion chamber by using bio-emulsion fuel reduced the NOx emission. The increasing of bio-oil content caused increasing water content in bio-emulsion fuel so total calorific value was reduced. So the characteristics of power was decreased in proportion to using the increasing amount of bio-emulsion fuel. Heavy oil as a marine fuel exhausts a lot of smoke and NOx. We expect that we can reduce the exhaust gas of marine engine such as smoke and NOx by using of bio-emulsion fuel as a marine fuel.

Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts (Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응)

  • Lee, Seong Chan;Zuo, Hao;Woo, Hee Chul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/��-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.

The Primary Research on oil Conversion Technology of biomass by Pyrolysis (열분해에 의한 바이오매스의 유류자원화 기술에 관한 기초 연구)

  • Chio, Hyuk-Jin;Yoo, Sun-Kyoung;Oh, Sang-Woo;Lee, Seung-Guk;Lee, Seung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • This study aims to develop an alternative energy like oil made from marine organic waste by marine products waste, spent fishing nets. There are already many commercial examples and case studies based on the petroleum industry-refuse plastic or refuse tire, however, it is rare that a research developing alternative energy from food waste and organic waste. Therefore, this study investigated the oil made from thermal decomposition under the high temperature and high pressure condition, and examined the possibility for commercial use by testing its own characteristics. A bio-oil from thermal decomposition at $250^{\circ}C$ and 40 atm was hard to remove impurities because of its high viscosity, showed lower caloric value than heavy oil, and generated various gases which were not appropriate for the use of fuel. It is noticeable that thermal decomposition was occurred at $250{\pm}5^{\circ}C$ using steam pressure, which much lower compared to the existing method of thermal decomposition, more than $500^{\circ}C$. Since the high viscosity of bio-oil, it is necessary a further study to use as liquid fuel.

  • PDF

International Trends in Development, Commercialization and Market of Bio-Plastics (국내외 바이오 플라스틱의 연구개발, 제품화 및 시장 동향)

  • You, Young-Sun;Oh, Yu-Sung;Hong, Seung-Hoi;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.141-152
    • /
    • 2015
  • As environmental issues are emerging, bio-plastic suppliers in leading countries have been foreseeing the strong needs for environment-friendly materials such as eco-packing materials due to increased attention and regulation on recycle. To catch up with the demand, various types of bio-plastics based on natural feedstocks were developed and released on a market. These bio-plastic products drew the great attention even in domestic industries. At present, international oil price fluctuation and heavy charge on waste raise the unit cost of production and disposal expense of conventional plastic materials. These conditions make bio-plastic an alternative, because it is not restrained by oil prices and problem in the disposal. It is also expected that bio-plastic will be applied to various types of products including containers, industrial supplies, disposables, and medical supplies. However, the bio-plastic is still in its infancy, thus more research and understanding should be followed to put it to application. Bio-plastic is considered as environment-friendly material with high potential which has the advantages of production and disposal.

Nano Particle Emission Charataristics of Biodiesel (바이오디젤의 미세입자 배출특성)

  • Song, Hoyoung;Lee, Minho;Kim, Jaigueon;Jung, Choongsub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.199.2-199.2
    • /
    • 2010
  • Biodiesels are well-known as alternative fuels. also we know that biodiesels increase NOx and reduce PM(Particulate Matter) by previous many studies. But PM in most these studies was considered about the mass. In this study, We have performed experimental test for PM and exhaust emission by mixed ratio of biodiesel in heavy duty diesel engine. PM was investigated by The nano particle number and the mass. The mass of PM was evaluated by using the standard gravimetric method, The number of PM was evaluated by using the EEPS(Engine Exhaust Particle Sizer), on the ESC(European Steady Cycle) mode. Sampled gas through dilutor was directly extracted from tail pipe and EEPS measured diluted exhaust gas. Biodiesel is made up of used cooking oil. Diesel as base fuel was sold on market and contains 2% biodiesel. The mass of PM was reduced 10% and the nano particle number was increased 5%. The particle number less than 40nm was increased, but the particle number more than 40nm is decreased.

  • PDF

Physical and Chemical Characteristics of Solvent-Insolubles and Solvent-Solubles in Oilsands Bitumen (Oilsands Bitumen의 용매 불용분 및 용해분의 물리.화학적 특성 연구)

  • Kim, Kyoung-Hoon;Jeon, Sang-Goo;Nho, Nam-Sun;Kim, Kwang-Ho;Shin, Dae-Hyun;Lee, Ki-Bong;Park, Hyo-Nam;Han, Myung-Wan
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.38-45
    • /
    • 2008
  • In this work, we investigated the variation of physical and chemical characteristics of solvent-insolubles and solvent-solubles in Canada's Athabasca oil sands by solvent-insolubles experiments. N-Heptane, n-Hexane, and n-Pentane were tested for solvents and asphaltenes were separated from maltenes by using a modified ASTM D 3279 method. Elemental analysis, boiling point distribution (SIMDIS), molecular weight distribution, heavy metal contents, API gravity, viscosity and SARA fractions were measured for thorough samples. The asphaltenes-removed maltenes contained less sulfur and heavy metal amounts and had lower molecular weight than the original bitumen. N-Pentane solvent could lower sulfur and heavy metal amounts, molecular weight, and viscosity of maltenes compared to the other solvents. Eventually, we confirmed that the obtained experimental data could be used as basic informations of bitumen upgrading processes for the production of SCO (synthetic crude oil).