• Title/Summary/Keyword: Bio diesel Fuel

Search Result 99, Processing Time 0.025 seconds

Study on the Performance and Emission Characteristics of a DI Diesel Engine Operated with LPG / Bio-diesel Blended Fuel (LPG/바이오디젤 혼합연료를 사용하는 직접분사식 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2010
  • In this study, we experimentally investigated a compression ignition engine operated with Bio-diesel blended LPG fuel. In particular, the performance, emissions characteristics (including total hydrocarbon, carbon monoxide, nitrogen oxides, and carbon dioxides emissions), and combustion stability of a CI engine fueled with Bio-diesel blended LPG fuel were examined at 1500 rpm. The percentage of Bio-diesel in the fuel blend ranged from 20-60%. The results showed that stable engine operation was possible for a wide range of engine loads up to 40% Bio-diesel by mass. When the Bio-diesel content was increased, leading to a decrease in the lower heating value of the blended fuel, the cetane value increased, resulting in a advanced start of heat release. Exhaust emission measurements showed that THC and CO emissions were increased when using the blended fuel at low engine speeds due to partial burn from over-mixing. NOx emission was emitted less at lower loads and more at higher loads.

Combustion and Emission Characteristics of Biodiesel Fuel in a Common Rail Diesel Engines (커먼레일 디젤엔진을 이용한 바이오디젤 연료의 연소 및 배출가스 특성)

  • Zhang, Yue-Qiu;Wang, Jianxin;Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.252-258
    • /
    • 2009
  • Engine bench tests has been done on a common-rail diesel engine with bio-diesel fuel to study effects of B100 and B20 on output power, fuel consumption and emissions. Test results show that B100 and B20 could reduce PM, HC, CO emission and smoke, but power decrease, fuel consumption increase and NOx increase obviously, B100 reduce PM and DS with $50%{\sim}70%$ and $80%{\sim}85%$ compared with diesel fuel, while B20 reduce PM and DS with $25%{\sim}35%$ and $30%{\sim}40%$. NOx of B100 and B20 increase $5%{\sim}20%$ compare to diesel.

COMBUSTION VISUALIZATION AND EMISSIONS OF A DIRECT INJECTION COMPRESSION IGNITION ENGINE FUELED WITH BIO-DIESOHOL

  • LU X.;HUANG Z.;ZHANG W.;LI D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • The purpose of this paper is to experimentally investigate the engine pollutant emissions and combustion characteristics of diesel engine fueled with ethanol-diesel blended fuel (bio-diesohol). The experiments were performed on a single-cylinder DI diesel engine. Two blend fuels were consisted of $15\%$ ethanol, $83.5\%$ diesel and $1.5\%$ solublizer (by volume) were evaluated: one without cetane improver (E15-D) and one with a cetane improver (E15-D+CN improver). The engine performance parameters and emissions including fuel consumption, exhaust temperature, lubricating oil temperature, Bosch smoke number, CO, NOx, and THC were measured, and compared to the baseline diesel fuel. In order to gain insight into the combustion characteristics of bio-diesohol blends, the engine combustion processes for blended fuels and diesel fuel were observed using an Engine Video System (AVL 513). The results showed that the brake specific fuel consumption (BSFC) increased at overall engine operating conditions, but it is worth noting that the brake thermal efficiency (BTE) increased by up to $1-2.3\%$ with two blends when compared to diesel fuel. It is found that the engine fueled with ethanol-diesel blend fuels has higher emissions of THC, lower emissions of CO, NOx, and smoke. And the results also indicated that the cetane improver has positive effects on CO and NOx emissions, but negative effect on THC emission. Based on engine combustion visualization, it is found that ignition delay increased, combustion duration and the luminosity of flame decreased for the diesohol blends. The combustion is improved when the CN improver was added to the blend fuel.

Macroscopic Behavior and Atomization Characteristics of Bio-diesel Fuels (바이오 디젤 연료의 분무 거동 및 미립화 특성)

  • Suh, Hyun-Kyu;Park, Sung-Wook;Kwon, Sang-Il;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.23-29
    • /
    • 2004
  • This work was conducted to figure out the atomization characteristics of three types of bio-diesel fuels using a common-rail injection system. The process of spray development was visualized by using a spray visualization system composed of a Nd:YAG laser and an ICCD camera, The spray tip penetrations were analyzed based on the frozen images from the spray visualization system. On the other hand, the microscopic atomization characteristics such as the distributions of SMD and axial mean velocity were measured by using a phase Doppler particle analyzer system, It is revealed that the sprays of the bio-diesel fuels have larger SMD than that of diesel fuel mainly due to high viscosity of bio-diesel. Different characteristics of bio-diesel fuels were also measured in spray tip penetrations according to the fuels and mixing ration.

Performance and Emission Studies in a DI Diesel Engine Using Wood Pyrolysis Oil-Bio Diesel Emulsion (목질계 열분해유-바이오 디젤 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the WPO. One of the easiest way to adopt WPO to diesel engine without modifications is emulsification of WPO with diesel or bio diesel. In this study, a DI diesel engine operated with diesel, bio diesel (BD), WPO/BD emulsion was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by WPO/BD emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation.

The Effect of Biodiesel and Ultra Low Sulfur Diesel Fuels on Emissions in 11,000 cc Heavy-Duty Diesel Engine

  • Baik, Doo-Sung;Han, Young-Chool
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.870-876
    • /
    • 2005
  • It seems very difficult to comply with upcoming stringent emission standards in vehicles. To develop low emission engines, better quality of automotive fuels must be achieved. Since sulfur contents in diesel fuels are transformed to sulfate-laden particulate matters as a catalyst is applied, it is necessary to provide low sulfur fuels before any Pt-based oxidation catalysts are applied. In general, flash point, distillation $90\%$ and cetane index are improved but viscosity can be worse in the process of desulfurization of diesel fuel. Excessive reduction of sulfur may cause to degrade viscosity of fuels and engine performance in fuel injection systems. This research focused on the performance of an 11,000 cc diesel engine and emission characteristics by the introduction of ULSD, bio-diesel and a diesel oxidation catalyst, where the bio-diesel was used to improve viscosity of fuels in fuel injection systems as fuel additives or alternative fuels.

Performance and Emission Characteristics of a Diesel Engine Operated with Wood Pyrolysis Oil (목질 열분해유를 사용하는 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.102-112
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is emulsification of BCO with diesel and bio diesel. In this study, a diesel engine operated with diesel, bio diesel (BD), BCO/diesel, BCO/bio diesel emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by BCO emulsions were examined. Results showed that stable engine operation was possible with emulsions and engine output power was comparable to diesel and bio diesel operation. However, in case of BCO/diesel emulsion operation, THC & CO emissions were increased due to the increased ignition delay and poor spray atomization and NOx & Soot were decreased due to the water and oxygen in the fuel. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion and clogging especially in the injection system.

Comparison of combustion characteristics between esterified and non-esterified bio-diesel oil on CRDI diesel engine with turbocharger (전자 제어 분사식 과급디젤기관에서 에스테르화와 비에스테르화 바이오 디젤유의 연소 특성 비교)

  • Lee, Sang Deuk;Jung, Suk Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • In order to judge that non-esterified soybean oil could be used on diesel engine with electronic control of fuel injection system, The test of combustion performance using only gas oil, gas oil blended with esterified bio-diesel oil 5% and non-esterified soybean oil 5% were carried out. It is noticed that most performances of gas oil blended with esterified bio-diesel oil 5% and non-esterified 5% have similar characteristics but non-esterified bio-diesel oil 5% emitted smaller NOx, resulting from fuel NO.

An Experimental Study on the Exhaust pollutant Reduction in Diesel Engine using a Rice-Bran Oil (미강유를 사용한 디젤기관에서의 배기오염물질 저감에 관한 실험적 연구)

  • 이준서
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.754-762
    • /
    • 1998
  • Exhaust emissions in diesel engine are affected by fuel properties but the reason for this is not clear. Especially the recent strong interest in using low-grade fuel demands extensibe investigation in order to clarify the exhaust emissions. Bio-Diesel oil has a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. The use of bio-oils in diesel engines has received considerable atten-tion to the forseeable depletion of world oil supplies. So bio-diesel oil has been attracted with attentions for alternative and clean energy source. The purpose of this paper is to evaluate the fea-sibility of the rice-bran oil for alternative fuel in a diesel engine with rgard to exhaust emis-sions.

  • PDF

The Effect of Bio-diesel Fuel on Industrial Diesel Engine (바이오디젤 연료가 산업용 디젤 엔진 성능에 미치는 영향)

  • Park, Kweon-Ha;Kim, Ju-Youn;Kim, Chul-Jung;Ko, Jea-Hyun;Park, Hong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.72-77
    • /
    • 2012
  • An alternative fuel is introduced as an environmentally friendly fuel in order to reduce the toxic emissions from conventional fossil fuels. In this study a bio-diesel fuel is produced and applied into the industrial diesel engine to understand the effect on the performance. The test conditions are loads of idle to maximum torque and engine speeds of 700 to 1900 rpm in bio-diesel blending percents of 0, 10, 20%. The results show that smoke and CO emissions are reduced while NOx in slightly increased, and the effects are rather clear in higher loads.